ZnO Nanorods Coated Tapered U-Shape Plastic Optical Fiber for Relative Humidity Detection
Abstract
:1. Introduction
2. Preparation of ZnO Nanorods Coated Tapered U-Shape POF
3. Experimental Setup and Arrangement
4. Result and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peng, Y.; Zhao, Y.; Chen, M.-Q.; Xia, F. Research Advances in Microfiber Humidity Sensors. Small 2018, 14, 1800524. [Google Scholar] [CrossRef]
- Jali, M.H.; Rahim, H.R.A.; Johari, M.A.M.; Hamid, S.S.; Yusof, H.H.M.; Thokchom, S.; Wang, P.; Harun, S.W. Optical characterization of different waist diameter on microfiber loop resonator humidity sensor. Sens. Actuators A Phys. 2019, 285, 200–209. [Google Scholar] [CrossRef]
- Mallik, A.K.; Liu, D.; Kavungal, V.; Wu, Q.; Farrell, G.; Semenova, Y. Agarose coated spherical micro resonator for humidity measurements. Opt. Express 2016, 24, 21216–21227. [Google Scholar] [CrossRef] [Green Version]
- Md Johari, M.A.; Abdul Khudus, M.I.M.; Bin Jali, M.H.; Noman, A.A.; Harun, S.W. Effect of Size on Single and Double Optical Microbottle Resonator Humidity Sensors. Sens. Actuators A Phys. 2018, 284, 286–291. [Google Scholar] [CrossRef]
- Azad, S.; Sadeghi, E.; Parvizi, R.; Mazaheri, A.; Yousefi, M. Sensitivity optimization of ZnO clad-modified optical fiber humidity sensor by means of tuning the optical fiber waist diameter. Opt. Laser Technol. 2017, 90, 96–101. [Google Scholar] [CrossRef]
- Irawati, N.; Rahman, H.; Ahmad, H.; Harun, S. A PMMA microfiber loop resonator based humidity sensor with ZnO nanorods coating. Measurement 2016, 99, 128–133. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, C.; Xia, K.; Peng, S.; Guan, H.; Tang, J.; Lu, H.; Yu, J.; Zhang, J.; Xiao, Y.; et al. Tungsten disulfide (WS_2) based all-fiber-optic humidity sensor. Opt. Express 2016, 24, 8956–8966. [Google Scholar] [CrossRef] [PubMed]
- Ascorbe, J.; Corres, J.; Matias, I.R.; Arregui, F.J. High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances. Sens. Actuators B Chem. 2016, 233, 7–16. [Google Scholar] [CrossRef] [Green Version]
- Faruki, M.J.; Ab Razak, M.Z.; Azzuhri, S.R.; Rahman, M.T.; Soltanian, M.R.K.; Brambilla, G.; Rahman, B.M.A.; Grattan, K.T.V.; De La Rue, R.; Ahmad, H. Effect of titanium dioxide (TiO2) nanoparticle coating on the detection performance of microfiber knot resonator sensors for relative humidity measurement. Mater. Express 2016, 6, 501–508. [Google Scholar] [CrossRef] [Green Version]
- Hernaez, M.; Acevedo, B.; Mayes, A.G.; Melendi-Espina, S. High-performance optical fiber humidity sensor based on lossy mode resonance using a nanostructured polyethylenimine and graphene oxide coating. Sens. Actuators B Chem. 2019, 286, 408–414. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Banerjee, P.; Mitra, P.; Roy, A. Zinc oxide–based nanomaterials for environmental applications. Handb. Smart Photocatalytic Mater. 2020, 73–107. [Google Scholar] [CrossRef]
- Lokman, M.Q.; Rahim, H.R.B.A.; Harun, S.W.; Hornyak, G.L.; Mohammed, W.S. Light backscattering (e.g. reflectance) by ZnO nanorods on tips of plastic optical fibres with application for humidity and alcohol vapour sensing. Micro Nano Lett. 2016, 11, 832–836. [Google Scholar] [CrossRef]
- Kulkarni, S.S.; Shirsa, M.D. Optical and structural properties of zinc oxide nanoparticles. Int. J. Adv. Res. Phys. Sci. 2015, 2, 14–18. [Google Scholar]
- Yusof, H.H.M.; Harun, S.W.; Dimyati, K.; Bora, T.; Mohammed, W.S.; Dutta, J. Optical dynamic range maximization for humidity sensing by controlling growth of zinc oxide nanorods. Photonics Nanostruct. Fundam. Appl. 2018, 30, 57–64. [Google Scholar] [CrossRef]
- Azad, S.; Sadeghi, E.; Parvizi, R.; Mazaheri, A. Fast response relative humidity clad-modified multimode optical fiber sensor with hydrothermally dimension controlled ZnO nanorods. Mater. Sci. Semicond. Process. 2017, 66, 200–206. [Google Scholar] [CrossRef]
- Jali, M.H.; Rahim, H.R.A.; Yusof, H.H.M.; Johari, A.; Thokchom, S.; Harun, S.W. Humidity Effects on the Growth of ZnO Nanorods using Hydrothermal Method. J. Phys. Conf. Ser. 2020, 1552, 012004. [Google Scholar] [CrossRef]
- Harith, Z.; Batumalay, M.; Irawati, N.; Harun, S.W.; Ahmad, H.; Hu, T. ZnO nanorod-coated tapered plastic fiber sensors for relative humidity. Opt. Commun. 2020, 473, 125924. [Google Scholar] [CrossRef]
- Yusof, H.H.M.; Harun, S.W.; Dimyati, K.; Bora, T.; Sterckx, K.; Mohammed, W.S.; Dutta, J. Low-Cost Integrated Zinc Oxide Nanorod-Based Humidity Sensors for Arduino Platform. IEEE Sens. J. 2018, 19, 2442–2449. [Google Scholar] [CrossRef]
- Batumalay, M.; Harun, S.; Ahmad, F.; Nor, R.; Zulkepely, N.; Ahmad, H. Study of a fiber optic humidity sensor based on agarose gel. J. Mod. Opt. 2014, 61, 244–248. [Google Scholar] [CrossRef]
- Teng, C.; Jing, N.; Yu, F.; Zheng, J. Investigation of a Macro-Bending Tapered Plastic Optical Fiber for Refractive Index Sensing. IEEE Sens. J. 2016, 16, 7521–7525. [Google Scholar] [CrossRef]
- Vijayan, A.; Fuke, M.; Hawaldar, R.; Kulkarni, M.; Amalnerkar, D.; Aiyer, R. Optical fibre based humidity sensor using Co-polyaniline clad. Sens. Actuators B Chem. 2008, 129, 106–112. [Google Scholar] [CrossRef]
- Batumalay, M.; Harun, S.W.; Irawati, N.; Ahmad, H.; Arof, H. A Study of Relative Humidity Fiber-Optic Sensors. IEEE Sens. J. 2014, 15, 1945–1950. [Google Scholar] [CrossRef]
- Fuke, M.V.; Kanitkar, P.; Kulkarni, M.; Kale, B.B.; Aiyer, R.C. Effect of particle size variation of Ag nanoparticles in Polyaniline composite on humidity sensing. Talanta 2010, 81, 320–326. [Google Scholar] [CrossRef]
- Mulyanti, B.; Abdurrahman, F.; Pawinanto, R.E.; Heri, A.; Sugandi, G. Fabrication of Polymer Optical Fiber as Intrinsic Optical Sensor Using Etching Technique. Adv. Sci. Lett. 2017, 23, 1310–1313. [Google Scholar] [CrossRef]
- Rahman, H.; Harun, S.; Yasin, M.; Phang, S.; Damanhuri, S.; Arof, H.; Ahmad, H. Tapered plastic multimode fiber sensor for salinity detection. Sens. Actuators A Phys. 2011, 171, 219–222. [Google Scholar] [CrossRef]
- Divagar, M.; Gowri, A.; John, S.; Sai, V.V.R. Graphene oxide coated U-bent plastic optical fiber based chemical sensor for organic solvents. Sens. Actuators B Chem. 2018, 262, 1006–1012. [Google Scholar] [CrossRef]
- Rajan, G.; Mathews, S.; Farrell, G.; Semenova, Y. A liquid crystal coated tapered photonic crystal fiber interferometer. J. Opt. 2010, 13, 015403. [Google Scholar] [CrossRef] [Green Version]
- Corres, J.M.; Arregui, F.J.; Matías, I.R. Sensitivity optimization of tapered optical fiber humidity sensors by means of tuning the thickness of nanostructured sensitive coatings. Sens. Actuators B Chem. 2007, 122, 442–449. [Google Scholar] [CrossRef]
- Harith, Z.; Irawati, N.; Rafaie, H.A.; Batumalay, M.; Harun, S.W.; Nor, R.; Ahmad, H. Tapered Plastic Optical Fiber Coated with Al-Doped ZnO Nanostructures for Detecting Relative Humidity. IEEE Sens. J. 2014, 15, 845–849. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Lei, H.; Song, J.; Chen, H.; Li, B. Growth of well-arrayed ZnO nanorods on thinned silica fiber and application for humidity sensing. Opt. Express 2012, 20, 19404–19411. [Google Scholar] [CrossRef]
- Guo, Z.; Chu, F.; Fan, J.; Zhang, Z.; Bian, Z.; Li, G.; Song, X. Study of macro-bending biconical tapered plastic optical fiber for relative humidity sensing. Sens. Rev. 2019, 39, 352–357. [Google Scholar] [CrossRef]
- Jagtap, S.; Rane, S.; Arbuj, S.; Rane, S.; Gosavi, S. Optical fiber based humidity sensor using Ag decorated ZnO nanorods. Microelectron. Eng. 2018, 187–188, 1–5. [Google Scholar] [CrossRef]
- Jindal, R.; Tao, S.; Singh, J.P.; Gaikwad, P. High dynamic range fiber optic relative humidity sensor. Opt. Eng. 2002, 41, 1093–1096. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, D.; Xu, Y.; Sun, S.; Sun, X. Refractive Index Sensor Based on Double Side-Polished U-Shaped Plastic Optical Fiber. Sensors 2020, 20, 5253. [Google Scholar] [CrossRef]
- Wandermur, G.; Rodrigues, D.; Allil, R.; Queiroz, V.; Peixoto, R.; Werneck, M.; Miguel, M. Plastic optical fiber-based biosensor platform for rapid cell detection. Biosens. Bioelectron. 2014, 54, 661–666. [Google Scholar] [CrossRef]
- Punjabi, N.; Satija, J.; Mukherji, S. Evanescent Wave Absorption Based Fiber-Optic-Cascading of Bend and Tapered Geometry for Enhanced Sensitivity. In Sensing Technology: Current Status and Future Trends III; Springer: Cham, Switzerland, 2015; pp. 25–45. [Google Scholar]
- Tan, A.J.Y.; Ng, S.M.; Stoddart, P.R.; Chua, H.S. Theoretical Model and Design Considerations of U-Shaped Fiber Optic Sensors: A Review. IEEE Sens. J. 2020, 20, 14578–14589. [Google Scholar] [CrossRef]
- Rahim, H.R.B.A.; Manjunath, S.; Fallah, H.; Thokchom, S.; Harun, S.W.; Mohammed, W.S.; Hornyak, L.G.; Dutta, J. Side coupling of multiple optical channels by spiral patterned zinc oxide coatings on large core plastic optical fibers. Micro Nano Lett. 2016, 11, 122–126. [Google Scholar] [CrossRef] [Green Version]
- Arifin, N.A.; Denan, Z. An analysis of indoor air temperature and relative humidity in office room with various external shading devices in Malaysia. Procedia-Soc. Behav. Sci. 2015, 179, 290–296. [Google Scholar] [CrossRef] [Green Version]
- Parangusan, H.; Bhadra, J.; Ahmad, Z.; Mallick, S.; Touati, F.; Al-Thani, N. Capacitive type humidity sensor based on PANI decorated Cu–ZnS porous microspheres. Talanta 2020, 219, 121361. [Google Scholar] [CrossRef]
- Arunachalam, S.; Izquierdo, R.; Nabki, F.J.S. Low-hysteresis and fast response time humidity sensors using suspended functionalized carbon nanotubes. Sensors 2019, 19, 680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulfa, M.; Nisa, D.; Prasetyoko, D. Investigating the hydrophilicity of zinc oxide nanoparticles using xylene and water for ibuprofen adsorption. J. Chem. Technol. Metall. 2021, 56, 761–768. [Google Scholar]
- Sikarwar, S.; Yadav, B. Opto-electronic humidity sensor: A review. Sens. Actuators A Phys. 2015, 233, 54–70. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Shao, Y.; Liao, C.; Wang, Y. Highly sensitive surface plasmon resonance humidity sensor based on a polyvinyl-alcohol-coated polymer optical fiber. Biosensors 2021, 11, 461. [Google Scholar] [CrossRef] [PubMed]
- Jali, M.H.; Rahim, H.R.; Johari, M.A.; Yusof, H.H.; Ahmad, A.; Thokchom, S.; Dimyati, K.; Harun, S.W. Humidity sensing using microfiber-ZnO nanorods coated glass structure. Optik 2021, 238, 166715. [Google Scholar] [CrossRef]
- Zain, H.A.; Jali, M.H.; Rahim, H.R.A.; Johari, A.M.; Yusof, H.H.M.; Thokchom, S.; Yasin, M.; Harun, S.W. ZnO nanorods coated microfiber loop resonator for relative humidity sensing. Opt. Fiber Technol. 2020, 54, 102080. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, Y.; Liu, W.; Zhang, H.; Zhang, Y.; Zhang, Z.; Guo, J.; Liu, J.; Zhang, L.; Tan, Q.-L. A Cost-Effective Relative Humidity Sensor Based on Side Coupling Induction Technology. Sensors 2017, 17, 944. [Google Scholar] [CrossRef] [Green Version]
- Harith, Z.; Batumalay, M.; Irawati, N.; Harun, S.; Arof, H.; Ahmad, H. Relative humidity sensor employing tapered plastic optical fiber coated with seeded Al-doped ZnO. Optik 2017, 144, 257–262. [Google Scholar] [CrossRef]
Refs. | Sensing Element | Range (%RH) | Sensitivity |
---|---|---|---|
This work | U-shape POF | 35–90 | 0.0231 V/%RH |
[6] | Silica fiber | 50–80 | 0.5221 dBm/% |
[44] | Straight POF | 40–90 | 4.98 nm/%RH |
[45] | Glass substrate | 35–85 | 0.0527 dBm/% |
[46] | Silica fiber | 35–85 | 0.2774 dBm/% |
[47] | Twisted macro-bend POF | 40–80 | 4.23 nW/% |
[48] | Straight POF | 50–75 | 0.0172 mV/% |
Parameters | N-UPOF | Z-UPOF |
---|---|---|
Average Standard deviation (V) | 0.1157 | 0.0619 |
Resolution (%) | 7.3233 | 3.1958 |
Sensitivity (V/%RH) | 0.0158 | 0.0194 |
Linearity (%) | >99 | >99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johari, S.H.; Cheak, T.Z.; Abdul Rahim, H.R.; Jali, M.H.; Mohd Yusof, H.H.; Md Johari, M.A.; Yasin, M.; Harun, S.W. ZnO Nanorods Coated Tapered U-Shape Plastic Optical Fiber for Relative Humidity Detection. Photonics 2022, 9, 796. https://doi.org/10.3390/photonics9110796
Johari SH, Cheak TZ, Abdul Rahim HR, Jali MH, Mohd Yusof HH, Md Johari MA, Yasin M, Harun SW. ZnO Nanorods Coated Tapered U-Shape Plastic Optical Fiber for Relative Humidity Detection. Photonics. 2022; 9(11):796. https://doi.org/10.3390/photonics9110796
Chicago/Turabian StyleJohari, Siti Halma, Tiu Zian Cheak, Hazli Rafis Abdul Rahim, Mohd Hafiz Jali, Haziezol Helmi Mohd Yusof, Md Ashadi Md Johari, Moh Yasin, and Sulaiman Wadi Harun. 2022. "ZnO Nanorods Coated Tapered U-Shape Plastic Optical Fiber for Relative Humidity Detection" Photonics 9, no. 11: 796. https://doi.org/10.3390/photonics9110796
APA StyleJohari, S. H., Cheak, T. Z., Abdul Rahim, H. R., Jali, M. H., Mohd Yusof, H. H., Md Johari, M. A., Yasin, M., & Harun, S. W. (2022). ZnO Nanorods Coated Tapered U-Shape Plastic Optical Fiber for Relative Humidity Detection. Photonics, 9(11), 796. https://doi.org/10.3390/photonics9110796