A Principal Approach to the Detection of Radiation-Induced DNA Damage by Circular Dichroism Spectroscopy and Its Dosimetric Application
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hegazy, E.A.; Sasuga, T.; Nishii, M.; Seguchi, T. Irradiation effects on aromatic polymers: 1. Gas evolution by gamma irradiation. Polymer 1992, 33, 2897–2903. [Google Scholar] [CrossRef]
- McJury, M.; Oldham, M.; Cosgrove, V.P.; Murphy, P.S.; Doran, S.; Leach, M.O.; Webb, S. Radiation dosimetry using polymer gels: Methods and applications. Br. J. Radiol. 2000, 73, 919–929. [Google Scholar] [CrossRef]
- Marzougui, K.; Hamzaoui, A.H.; Farah, K.; Nessib, N.B. Electrical conductivity study of gamma-irradiated table sugar for high-dose dosimetry. Radiat. Meas. 2008, 43, 1254–1257. [Google Scholar] [CrossRef]
- Santos, T.; Ventura, T.; do Carmo Lopes, M. A review on radiochromic film dosimetry for dose verification in high energy photon beams. Radiat. Phys. Chem. 2021, 179, 109217. [Google Scholar] [CrossRef]
- Schreiner, L.J. Review of Fricke gel dosimeters. J. Phys. Conf. Ser. 2004, 3, 9–21. [Google Scholar] [CrossRef]
- Whittaker, B. A new PMMA dosimeter for low doses and low temperatures. Radiat. Phys. Chem. 1990, 35, 699–702. [Google Scholar] [CrossRef]
- Biramontri, S.; Haneda, N.; Tachibana, H.; Kojima, T. Effect of low irradiation temperature on the gamma-ray response of dyed and undyed PMMA dosimeters. Radiat. Phys. Chem. 1996, 48, 105–109. [Google Scholar] [CrossRef]
- Galante, A.M.S.; Villavicencio, A.L.C.H.; Campos, L.L. Preliminary investigations of several new dyed PMMA dosimeters. Radiat. Phys. Chem. 2004, 71, 393–396. [Google Scholar] [CrossRef]
- Alqathami, M.; Adamovics, J.; Benning, R.; Qiao, G.; Geso, M.; Blencowe, A. Evaluation of ultra-sensitive leucomalachite dye derivatives for use in the PRESAGE® dosimeter. Radiat. Phys. Chem. 2013, 85, 204–209. [Google Scholar] [CrossRef]
- Vo, P.P.; Doan, H.N.; Kinashi, K.; Sakai, W.; Tsutsumi, N.; Huynh, D.P. X-ray Visualization and Quantification Using Fibrous Color Dosimeter Based on Leuco Dye. Appl. Sci. 2020, 10, 3798. [Google Scholar] [CrossRef]
- Soliman, Y.S.; Tadros, S.M.; Beshir, W.B.; Saad, G.R.; Gallo, S.; Ali, L.I.; Naoum, M.M. Study of Ag nanoparticles in a polyacrylamide hydrogel dosimeters by optical technique. Gels 2022, 8, 222. [Google Scholar] [CrossRef] [PubMed]
- Delage, M.È.; Lecavalier, M.È.; Larivière, D.; Allen, C.N.; Beaulieu, L. Dosimetric properties of colloidal quantum dot-based systems for scintillation dosimetry. Phys. Med. Biol. 2019, 64, 095027. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Xie, J.; Wang, X.Y.; Wang, Y.; Li, Z.J.; Diefenbach, K.; Pan, Q.J.; Qian, Y.; Wang, J.Q.; Wang, S.; et al. Visible colorimetric dosimetry of UV and ionizing radiations by a dual-module photochromic nanocluster. Nat. Commun. 2021, 12, 2798. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Hou, H.; Hou, Y.C.; Zheng, Z.; Ma, Y.; Zhou, Z.; Guo, X.; Pan, Q.J.; Wang, Y.; Qian, Y.; et al. A new concept of radiation detection based on a fluorochromic and piezochromic nanocluster. J. Am. Chem. Soc. 2022, 144, 3449–3457. [Google Scholar] [CrossRef]
- Zheng, Z.; Qiu, J.; Lu, H.; Wang, J.Q.; Lin, J. Luminometric dosimetry of X-ray radiation by a zwitterionic uranium coordination polymer. RSC Adv. 2022, 12, 12878–12881. [Google Scholar] [CrossRef]
- Dey, S.; Fan, C.; Gothelf, K.V.; Li, J.; Lin, C.; Liu, L.; Liu, N.; Nijenhuis, M.A.D.; Saccà, B.; Simmel, F.C.; et al. DNA origami. Nat. Rev. Methods Primers 2021, 1, 13. [Google Scholar] [CrossRef]
- Dutta, P.K.; Zhang, Y.; Blanchard, A.T.; Ge, C.; Rushdi, M.; Weiss, K.; Zhu, C.; Ke, Y.; Salaita, K. Programmable multivalent DNA-origami tension probes for reporting cellular traction forces. Nano Lett. 2018, 18, 4803–4811. [Google Scholar] [CrossRef]
- Ochmann, S.E.; Joshi, H.; Büber, E.; Franquelim, H.G.; Stegemann, P.; Saccà, B.; Keyser, U.F.; Aksimentiev, A.; Tinnefeld, P. DNA origami voltage sensors for transmembrane potentials with single-molecule sensitivity. Nano Lett. 2021, 21, 8634–8641. [Google Scholar] [CrossRef]
- Zhang, X.; Pan, L.; Guo, R.; Zhang, Y.; Li, F.; Li, M.; Li, J.; Shi, J.; Qu, F.; Zuo, X.; et al. DNA origami nanocalipers for pH sensing at the nanoscale. Chem. Commun. 2022, 58, 3673–3676. [Google Scholar] [CrossRef]
- de Groot, F.M.H.; Gottarelli, G.; Masiero, S.; Proni, G.; Spada, G.P.; Dolci, N. Towards radiation-sensitive quasi-biological display. Angew. Chem. Int. Ed. Engl. 1997, 36, 954–955. [Google Scholar] [CrossRef]
- Kolyvanova, M.A.; Klimovich, M.A.; Shibaeva, A.V.; Koshevaya, E.D.; Bushmanov, Y.A.; Belousov, A.V.; Kuzmin, V.A.; Morozov, V.N. Cholesteric liquid-crystalline DNA—A new type of chemical detector of ionizing radiation. Liq. Cryst. 2022, 49, 1359–1366. [Google Scholar] [CrossRef]
- Kolyvanova, M.A.; Belousov, A.V.; Kuzmin, V.A.; Morozov, V.N. Modification of radiosensitivity of DNA cholesteric dispersion using dimethyl sulfoxide. High Energy Chem. 2022, 56, 388–390. [Google Scholar] [CrossRef]
- Trends in Radiation Sterilization of Health Care Products; International Atomic Energy Agency: Vienna, Austria, 2008.
- Zhang, Y.; Fu, Q.; Huang, T.; Liu, Y.; Chen, G.; Li, S. Ionizing radiation-induced DNA damage responses affect cell compressibility. Biochem. Biophys. Res. Commun. 2022, 603, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Figueroa-González, G.; Pérez-Plasencia, C. Strategies for the evaluation of DNA damage and repair mechanisms in cancer. Oncol. Lett. 2017, 13, 3982–3988. [Google Scholar] [CrossRef] [PubMed]
- Mavragani, I.V.; Nikitaki, Z.; Kalospyros, S.A.; Georgakilas, A.G. Ionizing radiation and complex DNA damage: From prediction to detection challenges and biological significance. Cancers 2019, 11, 1789. [Google Scholar] [CrossRef] [PubMed]
- Sofińska, K.; Wilkosz, N.; Szymoński, M.; Lipiec, E. Molecular spectroscopic markers of DNA damage. Molecules 2020, 25, 561. [Google Scholar] [CrossRef]
- Kuimova, M.K.; Cowan, A.J.; Matousek, P.; Parker, A.W.; Sun, X.Z.; Towrie, M.; George, M.W. Monitoring the direct and indirect damage of DNA bases and polynucleotides by using time-resolved infrared spectroscopy. Proc. Natl. Acad. Sci. USA 2006, 103, 2150–2153. [Google Scholar] [CrossRef]
- Synytsya, A.; Alexa, P.; de Boer, J.; Loewe, M.; Moosburger, M.; Würkner, M.; Volka, K. Raman spectroscopic study of calf thymus DNA: An effect of proton- and γ-irradiation. J. Raman Spectrosc. 2007, 38, 1406–1415. [Google Scholar] [CrossRef]
- Shaw, C.P.; Jirasek, A. The use of ultraviolet resonance Raman spectroscopy in the analysis of ionizing-radiation-induced damage in DNA. Appl. Spectrosc. 2009, 63, 412–422. [Google Scholar] [CrossRef]
- Ward, J.F.; Urist, M.M. γ-irradiation of aqueous solutions of polynucleotides. Int. J. Radiat. Biol. 1967, 12, 209–218. [Google Scholar] [CrossRef]
- Rafi, A.; Weiss, J.J.; Wheeler, C.M. Effect of γ-radiation on aqueous solutions of DNA’s of different base composition. Biochim. Biophys. Acta 1968, 169, 230–240. [Google Scholar] [CrossRef]
- Uyesugi, D.F.; Trumbore, C.N. The effect of low ionic strength on the radiation chemistry and physical properties of calf thymus DNA. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1983, 44, 627–643. [Google Scholar] [CrossRef] [PubMed]
- Tankovskaia, S.A.; Kotb, O.M.; Dommes, O.A.; Paston, S.V. Application of spectral methods for studying DNA damage induced by gamma-radiation, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 200, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Kotb, O.M.; Brozhik, D.S.; Verbenko, V.N.; Gulevich, E.P.; Ezhov, V.F.; Karlin, D.L.; Pak, F.A.; Paston, S.V.; Polyanichko, A.M.; Khalikov, A.I.; et al. Investigation of DNA damage induced by proton and gamma radiation. Biophysics 2021, 66, 202–208. [Google Scholar] [CrossRef]
- Nikitin, N.A.; Arkhipenko, M.V.; Dement’eva, O.V.; Kartseva, M.E.; Shishmakova, E.M.; Sanochkina, E.V.; Shiryaeva, E.S.; Kolyvanova, M.A.; Belousov, A.V.; Rudoy, V.M.; et al. Increased efficiency of radiation inactivation of virions by gold nanoparticles. Part. Part. Syst. Charact. in press. [CrossRef]
- Yevdokimov, Y.M.; Salyanov, V.I.; Semenov, S.V.; Skuridin, S.G. DNA Liquid-Crystalline Dispersions and Nanoconstructions; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2011. [Google Scholar]
- Hissung, A.; Dertinger, H.; Heinrich, G. The action of ionizing radiation on DNA in the presence of quinacrine. I. UV absorption and fluorescence measurements. Radiat. Environ. Biophys. 1975, 12, 5–12. [Google Scholar] [CrossRef]
- Jorge, A.F.; Nunes, S.C.C.; Cova, T.F.G.G.; Pais, A.A.C.C. Cooperative action in DNA condensation. Curr. Opin. Colloid Interface Sci. 2016, 26, 66–74. [Google Scholar] [CrossRef]
- Yevdokimov, Y.; Skuridin, S.; Salyanov, V.; Semenov, S.; Kats, E. Liquid-crystalline dispersions of double-stranded DNA. Crystals 2019, 9, 162. [Google Scholar] [CrossRef]
- Keller, D.; Bustamante, C. Theory of the interaction of light with large inhomogeneous molecular aggregates. II. Psi-type circular dichroism. J. Chem. Phys. 1986, 84, 2972–2980. [Google Scholar] [CrossRef]
- Shuryak, I.; Carlson, D.J.; Brown, J.M.; Brenner, D.J. High-dose and fractionation effects in stereotactic radiation therapy: Analysis of tumor control data from 2965 patients. Radiother. Oncol. 2015, 115, 327–334. [Google Scholar] [CrossRef]
- Ramroth, J.; Cutter, D.J.; Darby, S.C.; Higgins, G.S.; McGale, P.; Partridge, M.; Taylor, C.W. Dose and fractionation in radiation therapy of curative intent for non-small cell lung cancer: Meta-analysis of randomized trials. Int. J. Radiat. Oncol. Biol. Phys. 2016, 96, 736–747. [Google Scholar] [CrossRef] [PubMed]
- Roosen, J.; Klaassen, N.J.M.; Gotby, L.E.L.W.; Overduin, C.G.; Verheij, M.; Konijnenberg, M.W.; Nijsen, J.F.W. To 1000 Gy and back again: A systematic review on dose-response evaluation in selective internal radiation therapy for primary and secondary liver cancer. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 3776–3790. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolyvanova, M.A.; Klimovich, M.A.; Belousov, A.V.; Kuzmin, V.A.; Morozov, V.N. A Principal Approach to the Detection of Radiation-Induced DNA Damage by Circular Dichroism Spectroscopy and Its Dosimetric Application. Photonics 2022, 9, 787. https://doi.org/10.3390/photonics9110787
Kolyvanova MA, Klimovich MA, Belousov AV, Kuzmin VA, Morozov VN. A Principal Approach to the Detection of Radiation-Induced DNA Damage by Circular Dichroism Spectroscopy and Its Dosimetric Application. Photonics. 2022; 9(11):787. https://doi.org/10.3390/photonics9110787
Chicago/Turabian StyleKolyvanova, Maria A., Mikhail A. Klimovich, Alexandr V. Belousov, Vladimir A. Kuzmin, and Vladimir N. Morozov. 2022. "A Principal Approach to the Detection of Radiation-Induced DNA Damage by Circular Dichroism Spectroscopy and Its Dosimetric Application" Photonics 9, no. 11: 787. https://doi.org/10.3390/photonics9110787
APA StyleKolyvanova, M. A., Klimovich, M. A., Belousov, A. V., Kuzmin, V. A., & Morozov, V. N. (2022). A Principal Approach to the Detection of Radiation-Induced DNA Damage by Circular Dichroism Spectroscopy and Its Dosimetric Application. Photonics, 9(11), 787. https://doi.org/10.3390/photonics9110787