Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (412)

Search Parameters:
Keywords = radiation dosimetry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 400 KB  
Article
Energy-Dependent Neutron Emission in Medical Cyclotrons: Differences Between 18F and 11C and Implications for Radiation Protection
by Teresa Jakubowska and Michał Biegała
Appl. Sci. 2025, 15(22), 11946; https://doi.org/10.3390/app152211946 - 10 Nov 2025
Viewed by 125
Abstract
This study investigates neutron radiation sources in medical cyclotrons used for PET isotope production, focusing on differences between 18F and 11C. Neutron and gamma dose rates were measured in the bunker and operator control room during routine production with an 11 [...] Read more.
This study investigates neutron radiation sources in medical cyclotrons used for PET isotope production, focusing on differences between 18F and 11C. Neutron and gamma dose rates were measured in the bunker and operator control room during routine production with an 11 MeV Eclipse cyclotron. 18F production generated approximately 2.5 times higher neutron levels in the bunker than 11C. Shielding performance also varied: the same wall reduced neutron fluxes by factors of kF = 14,000 for 18F and kC = 86,000 for 11C, while gamma shielding was similar for both isotopes (kγ ≈ 28,000). However, the neutron shielding factor calculated from the data for 18F should be taken as kF ≥ 1.4 × 104, because several neutron readings reached the upper limit of the detector range, which indicates a partial underestimation of the dose in the bunker. Consequently, neutron levels in the control room during 18F production were about 15-fold higher than during 11C production. These differences result from distinct neutron generation mechanisms. The 18O(p,n)18F reaction produces primary neutrons with a Maxwellian spectrum (~2.5 MeV), while 11C neutrons arise solely from secondary interactions in structural materials. The findings emphasize the need for composite shielding adapted to isotope-specific spectra. Annual dose estimates (260 18F and 52 11C productions) showed neutron exposure (3.78 mSv/year, 57%) exceeded gamma exposure (2.82 mSv/year, 43%). The total dose of 6.6 mSv/year is ~33% of regulatory limits, supporting compliance but underscoring the need for dedicated neutron dosimetry. Full article
(This article belongs to the Special Issue Advances in Environmental Monitoring and Radiation Protection)
Show Figures

Figure 1

13 pages, 1326 KB  
Article
Characterization of Alpha Particle Track Lengths in LR-115 Detectors
by Luiz Augusto Stuani Pereira and Carlos Alberto Tello Sáenz
Physics 2025, 7(4), 56; https://doi.org/10.3390/physics7040056 - 7 Nov 2025
Viewed by 164
Abstract
We investigate the dependence of the maximum etched track length (Lmax) on alpha-particle energy and incidence angle in LR-115 type II nuclear track detectors by combining Geant4 Monte Carlo simulations with controlled chemical etching experiments. The bulk (VB [...] Read more.
We investigate the dependence of the maximum etched track length (Lmax) on alpha-particle energy and incidence angle in LR-115 type II nuclear track detectors by combining Geant4 Monte Carlo simulations with controlled chemical etching experiments. The bulk (VB) and track (VT) etch rates were determined under standardized conditions, yielding VB=(3.1±0.1) µm/h and VT=(5.98±0.06) µm/h, which correspond to a critical detection angle of about (58.8±1.2)°. Simulations covering initial energies spanning 1 MeV to 5 MeV and incidence angles up to 70° confirmed that the maximum etched track length varies quadratically with particle energy E and depends systematically on incidence angle θ. Empirical parameterizations of Lmax(E,θ) were obtained, and energy thresholds for complete track registration within the 12 µm sensitive layer were established. The angular acceptance predicted by the VT/VB ratio was validated, and the results demonstrate that Lmax provides a monotonic and more reliable observable for energy calibration compared to track diameter. These findings improve the quantitative calibration of LR-115 detectors and strengthen their use in environmental radon monitoring, radiation dosimetry, and alpha spectrometry. In addition, they highlight the utility of Geant4-based modeling for refining solid state nuclear track detector response functions and guiding the development of optimized detector protocols for nuclear and environmental physics applications. Full article
(This article belongs to the Section Applied Physics)
Show Figures

Figure 1

22 pages, 1069 KB  
Review
Optical Fiber Sensing Technologies in Radiation Therapy
by Zhe Guang, Chuan He, Victoria Bry, Anh Le, John DeMarco and Indrin J. Chetty
Photonics 2025, 12(11), 1058; https://doi.org/10.3390/photonics12111058 - 25 Oct 2025
Viewed by 633
Abstract
Optical fiber technology is becoming essential in modern radiation therapy, enabling precise, real-time, and minimally invasive monitoring. As oncology moves toward patient-specific treatment, there is growing demand for adaptable and biologically compatible sensing tools. Fiber-optic systems meet this need by integrating into clinical [...] Read more.
Optical fiber technology is becoming essential in modern radiation therapy, enabling precise, real-time, and minimally invasive monitoring. As oncology moves toward patient-specific treatment, there is growing demand for adaptable and biologically compatible sensing tools. Fiber-optic systems meet this need by integrating into clinical workflows with highly localized dosimetric and spectroscopic feedback. Their small size and flexibility allow deployment within catheters, endoscopes, or treatment applicators, making them suitable for both external beam and internal therapies. This paper reviews the fundamental principles and diverse applications of optical fiber sensing technologies in radiation oncology, focusing on dosimetry, spectroscopy, imaging, and adaptive radiotherapy. Implementations such as scintillating and Bragg grating-based dosimeters demonstrate feasibility for in vivo dose monitoring. Spectroscopic techniques, such as Raman and fluorescence spectroscopy, offer real-time insights into tissue biochemistry, aiding in treatment response assessment and tumor characterization. However, despite such advantages of optical fiber sensors, challenges such as signal attenuation, calibration demands, and limited dynamic range remain. This paper further explores clinical application, technical limitations, and future directions, emphasizing multiplexing capabilities, integration and regulatory considerations, and trends in machine learning development. Collectively, these optical fiber sensing technologies show strong potential to improve the safety, accuracy, and adaptability of radiation therapy in personalized cancer care. Full article
Show Figures

Figure 1

42 pages, 1849 KB  
Review
Recommendations on the Clinical Application and Future Potential of α-Particle Therapy: A Comprehensive Review of the Results from the SECURE Project
by Valentina Di Iorio, Anna Sarnelli, Stefano Boschi, Maddalena Sansovini, Rosa Maria Genovese, Cipriana Stefanescu, Vlad Ghizdovat, Wael Jalloul, Jennifer Young, Jane Sosabowski, Petra Kolenc, Rachel Roberts, Govert de With, Dimitris Visvikis and Renata Mikolajczak
Pharmaceuticals 2025, 18(10), 1578; https://doi.org/10.3390/ph18101578 - 18 Oct 2025
Viewed by 1389
Abstract
This review comprehensively assesses the clinical applications and future potential of alpha-emitting radionuclides available for targeted alpha-particle therapy (TAT) in cancer treatment. The approval of radium-223 therapy in 2013 marked a significant advancement in alpha-emitting therapeutic radiopharmaceuticals, which are primarily used in treatment [...] Read more.
This review comprehensively assesses the clinical applications and future potential of alpha-emitting radionuclides available for targeted alpha-particle therapy (TAT) in cancer treatment. The approval of radium-223 therapy in 2013 marked a significant advancement in alpha-emitting therapeutic radiopharmaceuticals, which are primarily used in treatment of prostate cancer. The EU SECURE project was introduced as a major initiative to enhance the sustainability and safety of medical alpha-emitting radionuclides production in Europe. This literature review was conducted by a multidisciplinary team on selected radionuclides, including actinium-225, bismuth-213, astatine-211, lead-212, terbium-149, radium-223 and thorium-227. These were selected based on their clinical significance, as identified in the EU PRISMAP project and subsequent literature searches. The review process involved searching major databases using specific keywords related to alpha-emitter therapy and was limited to articles in English. For each selected radionuclide, the physical characteristics, the radiochemistry, and the pre-clinical and clinical studies are explored. Actinium-225 is the most widely studied alpha emitter, with several preclinical and clinical studies on prostate cancer and neuroendocrine tumours. Other types of tumours (such as glioblastoma) still require preclinical and clinical development. Bismuth-213 bound to antibodies, peptides and nanobodies has shown optimal results in preclinical and clinical studies, with increased median survival and no significant toxicity. Astatine-211 differs from most other α-emitters relevant to TAT, since it yields one α-particle per decay. This offers certain translational advantages, including the simplification of radiation dosimetry calculations and quality control (QC). Lead-212 has the advantage of being an in situ generator with likely widespread availability. Although clinical data are limited, the findings are promising at this stage. The unconventional production of Terbium-149 is the primary reason it has not yet progressed to clinical trials. Overcoming this production obstacle would allow more detailed preclinical investigations. Optimal results with Thorium-227-labelled agents have been observed in preclinical studies, including delays in cellular growth, multiple double-strand breaks and complete regression. Intermediate phase I trial results have also been reported, demonstrating safety and tolerability, as well as an objective response rate of 25%.: The results highlight the advantages of alpha particles in targeting cancer cells with minimal radiation to normal tissue, emphasising the need for high specificity and stability in delivery mechanisms, as well as suggesting that the full clinical potential of alpha particle therapy remains unexplored. Theranostic approach and dosimetric evaluations still represent relevant challenges. Full article
(This article belongs to the Section Radiopharmaceutical Sciences)
Show Figures

Graphical abstract

15 pages, 282 KB  
Review
Radiation Safety in Prostatic Artery Embolization: A Review of Current Evidence and Best Practices
by Hyeon Yu
Radiation 2025, 5(4), 31; https://doi.org/10.3390/radiation5040031 - 16 Oct 2025
Viewed by 557
Abstract
Prostatic artery embolization (PAE) is increasingly used as a primary minimally invasive treatment modality for lower urinary tract symptoms associated with benign prostatic hyperplasia. As a complex, fluoroscopic-guided endovascular procedure, PAE necessitates a significant use of ionizing radiation, raising important safety considerations for [...] Read more.
Prostatic artery embolization (PAE) is increasingly used as a primary minimally invasive treatment modality for lower urinary tract symptoms associated with benign prostatic hyperplasia. As a complex, fluoroscopic-guided endovascular procedure, PAE necessitates a significant use of ionizing radiation, raising important safety considerations for both patients and medical personnel. The objective of this review is to first summarize the procedural and anatomic fundamentals of PAE, and then to provide a comprehensive overview of the current literature on radiation dosimetry, establish contemporary benchmarks for dose metrics, and present an evidence-based guide to practical dose optimization strategies. Through a thorough review of published clinical studies, this article synthesizes reported values for key radiation indices, including Dose Area Product (DAP), Cumulative Air Kerma (CAK), and Fluoroscopy Time (FT). Furthermore, we will critically examine factors influencing dose variability—including patient complexity, procedural technique, and imaging technology—and will provide a practical, clinically oriented guide to implementing dose-saving measures. Ultimately, this review concludes that while PAE involves a non-trivial radiation burden, a thorough understanding and application of optimization principles can ensure the procedure is performed safely, reinforcing its role as a valuable therapy for BPH. Full article
16 pages, 2601 KB  
Article
Real-Time Monitoring of Occupational Radiation Exposure in Nuclear Medicine Technologists: An Initial Study
by Masaki Fujisawa, Masahiro Sota, Yoshihiro Haga, Shigehisa Tanaka, Nozomi Kataoka, Toshiki Kato, Yuji Kaga, Mitsuya Abe, Masatoshi Suzuki, Yohei Inaba and Koichi Chida
Appl. Sci. 2025, 15(20), 11008; https://doi.org/10.3390/app152011008 - 14 Oct 2025
Viewed by 786
Abstract
Occupational radiation exposure in nuclear medicine presents complex spatial and temporal patterns due to the use of unsealed radiopharmaceuticals and prolonged proximity to patients. Traditional passive dosimetry provides only cumulative dose values, limiting its usefulness in identifying task-specific exposures or capturing momentary fluctuations. [...] Read more.
Occupational radiation exposure in nuclear medicine presents complex spatial and temporal patterns due to the use of unsealed radiopharmaceuticals and prolonged proximity to patients. Traditional passive dosimetry provides only cumulative dose values, limiting its usefulness in identifying task-specific exposures or capturing momentary fluctuations. This study applied a real-time dosimetry system capable of second-by-second measurements, combined with time-series analysis, to evaluate staff exposure during myocardial perfusion imaging using technetium-99m. Dosimeters were placed on the left and right sides of the neck and head of two radiological technologists. Dose rates were continuously recorded throughout the injection and imaging phases. The right side of the neck received the highest cumulative and peak dose rates among all sites. Although no significant difference in total dose was observed between the injection and imaging phases, specific high-exposure events were detected. Notably, ECG lead placement and post-injection handling produced dose spikes. A positive correlation was found between administered activity and dose rate at neck-level sites but not at head-level sites. These findings demonstrate the value of real-time dosimetry in identifying procedural actions associated with elevated exposure. Time-series analysis further contextualized these peaks, supporting improved task-specific protective strategies beyond the capabilities of conventional dosimetry. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

20 pages, 912 KB  
Review
A Review of the Alanine Electron Paramagnetic Resonance Dosimetry Method as a Dose Verification Tool for Low-Dose Electron Beam Applications: Implications on Flash Radiotherapy
by Babedi Sebinanyane, Marta Walo, Gregory Campbell Hillhouse, Chamunorwa Oscar Kureba and Urszula Gryczka
Appl. Sci. 2025, 15(20), 10939; https://doi.org/10.3390/app152010939 - 11 Oct 2025
Viewed by 541
Abstract
Alanine dosimetry based on Electron Paramagnetic Resonance (EPR) spectroscopy has been a reliable reference and transfer dosimetry method in high-dose applications, valued for its high precision, accuracy and long-term stability. Additional characteristics, such as dose-rate independence up to 1010 Gy/s under electron [...] Read more.
Alanine dosimetry based on Electron Paramagnetic Resonance (EPR) spectroscopy has been a reliable reference and transfer dosimetry method in high-dose applications, valued for its high precision, accuracy and long-term stability. Additional characteristics, such as dose-rate independence up to 1010 Gy/s under electron beam (e-beam) irradiation, electron energy independence and tissue equivalence, position alanine EPR as a promising candidate to address dosimetric challenges arising in e-beam Flash Radiotherapy (RT), where radiation energy is delivered at Ultra-High Dose-Rates (UHDR) ≥ 40 Gy/s. At such dose-rates, reliable real-time monitoring dosimeters such as ionization chambers in conventional RT, suffer from ion recombination, compromising accuracy in dose determination. Several studies are currently focused on developing real-time beam monitoring systems dedicated specifically for e-beam Flash RT. This creates a need for standardized reference dosimetry methods to validate beam parameters determined by these systems under investigation. This review provides an overview of the potential and limitations of the alanine EPR dosimetry method for control, validation and verification of e-beam Flash RT beam parameters at doses less than 10 Gy, where the method has shown low sensitivity and increased uncertainty. It further discusses strategies to optimize alanine EPR measurements to enhance sensitivity and accuracy at these dose levels. Improved measurement procedures will ensure reliable and accurate e-beam Flash RT accelerator commissioning, performance checks, patient safety and treatment efficacy across all therapeutic dose ranges. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

19 pages, 4096 KB  
Review
Review of VHEE Beam Energy Evolution for FLASH Radiation Therapy Under Ultra-High Dose Rate (UHDR) Dosimetry
by Nikolaos Gazis and Evangelos Gazis
Quantum Beam Sci. 2025, 9(4), 29; https://doi.org/10.3390/qubs9040029 - 9 Oct 2025
Viewed by 766
Abstract
Very-high-energy electron (VHEE) beams, ranging from 50 to 300 or 400 MeV, are the subject of intense research investigation, with considerable interest concerning applications in radiation therapy due to their accurate energy deposition into large and deep-seated tissues, sharp beam edges, high sparing [...] Read more.
Very-high-energy electron (VHEE) beams, ranging from 50 to 300 or 400 MeV, are the subject of intense research investigation, with considerable interest concerning applications in radiation therapy due to their accurate energy deposition into large and deep-seated tissues, sharp beam edges, high sparing properties, and minimal radiation effects on normal tissues. The very-high-energy electron beam, which ranges from 50 to 400 MeV, and Ultra-High-Energy Electron beams up to 1–2 GeV, are considered extremely effective for human tumor therapy while avoiding the spatial requirements and cost of proton and heavy ion facilities. Many research laboratories have developed advanced testing infrastructures with VHEE beams in Europe, the USA, Japan, and other countries. These facilities aim to accelerate the transition to clinical application, following extensive simulations for beam transport that support preclinical trials and imminent clinical deployment. However, the clinical implementation of VHEE for FLASH radiation therapy requires advances in several areas, including the development of compact, stable, and efficient accelerators; the definition of sophisticated treatment plans; and the establishment of clinically validated protocols. In addition, the perspective of VHEE for accessing ultra-high dose rate (UHDR) dosimetry presents a promising procedure for the practical integration of FLASH radiotherapy for deep tumors, enhancing normal tissue sparing while maintaining the inherent dosimetry advantages. However, it has been proven that a strong effort is necessary to improve the main operational accelerator conditions, ensuring a stable beam over time and across space, as well as compact infrastructure to support the clinical implementation of VHEE for FLASH cancer treatment. VHEE-accessing ultra-high dose rate (UHDR) perspective dosimetry is integrated with FLASH radiotherapy and well-prepared cancer treatment tools that provide an advantage in modern oncology regimes. This study explores technological progress and the evolution of electron accelerator beam energy technology, as simulated by the ASTRA code, for developing VHEE and UHEE beams aimed at medical applications. FLUKA code simulations of electron beam provide dose distribution plots and the range for various energies inside the phantom of PMMA. Full article
(This article belongs to the Section Instrumentation and Facilities)
Show Figures

Figure 1

24 pages, 2653 KB  
Article
Assessment of Carrier-Free Metallacarboranes for Targeted Radiation Therapies PBFT and BNCT: Comparative Cellular Effects and Dosimetry Studies with [o-FESAN] in Breast Cancer Cells
by Salvatore Di Maria, Teresa Pinheiro, Luís Cerqueira Alves, Valeria Bitonto, Nicoletta Protti, Simonetta Geninatti Crich, Kai Nishimura, Hiroyuki Nakamura, António P. Matos, Catarina I. G. Pinto, Filipa Mendes, Francesc Teixidor, Clara Viñas and Fernanda Marques
Pharmaceuticals 2025, 18(10), 1491; https://doi.org/10.3390/ph18101491 - 3 Oct 2025
Viewed by 806
Abstract
Background: Ferrabis(dicarbollide) ([o-FESAN]) in combination with proton–boron fusion therapy (PBFT) or boron neutron capture therapy (BNCT) are promising alternative radiation modalities for the treatment of breast cancer. The aim of this study was to explore the underlying effects of [...] Read more.
Background: Ferrabis(dicarbollide) ([o-FESAN]) in combination with proton–boron fusion therapy (PBFT) or boron neutron capture therapy (BNCT) are promising alternative radiation modalities for the treatment of breast cancer. The aim of this study was to explore the underlying effects of [o-FESAN] radio enhancement on breast cancer cells in vitro and in vivo, and to perform comparative dosimetry calculations. Methods: The cellular effects on SKBR-3 and MDA-MB-231 breast cancer cells and MDA-MB-231 xenograft-bearing nude mice induced by carrier-free [o-FESAN] after BNCT or PBFT were evaluated following recommended protocols. Monte Carlo (MC) dosimetry calculations were performed at the cellular scale for both radiation modalities. Results: Selective retention of [o-FESAN] within the cytoplasm and nucleus of SKBR-3 and MDA-MB-231 breast cancer cells is demonstrated. Moreover, in vivo studies with MDA-MB-231 xenograft-bearing nude mice show appreciable accumulation of [o-FESAN] in the tumor. Both radiation modalities induce loss of cellular viability and survival. Comparative dosimetry studies between proton and neutron irradiation agree with the viability data, showing a good correlation between absorbed dose vs. cellular effects. In the case of PBFT, cell structural changes are likely due to necrosis caused by the production of reactive oxygen species (ROS). To explain the radio enhancement effects in more detail, other mechanisms should be taken into consideration. Conclusions: Our results validate the effectiveness of both PBFT and BNCT therapeutic modalities, warranting further studies on carrier-free [o-FESAN] as a candidate drug for potential clinical translation of radio enhancers in binary radiation therapies. Full article
(This article belongs to the Section Radiopharmaceutical Sciences)
Show Figures

Graphical abstract

19 pages, 1888 KB  
Article
Murine Functional Lung Imaging Using X-Ray Velocimetry for Longitudinal Noninvasive Quantitative Spatial Assessment of Pulmonary Airflow
by Kevin A. Heist, Christopher A. Bonham, Youngsoon Jang, Ingrid L. Bergin, Amanda Welton, David Karnak, Charles A. Hatt, Matthew Cooper, Wilson Teng, William D. Hardie, Thomas L. Chenevert and Brian D. Ross
Tomography 2025, 11(10), 112; https://doi.org/10.3390/tomography11100112 - 2 Oct 2025
Viewed by 586
Abstract
Background/Objectives: The recent development of four-dimensional X-ray velocimetry (4DXV) technology (three-dimensional space and time) provides a unique opportunity to obtain preclinical quantitative functional lung images. Only single-scan measurements in non-survival studies have been obtained to date; thus, methodologies enabling animal survival for repeated [...] Read more.
Background/Objectives: The recent development of four-dimensional X-ray velocimetry (4DXV) technology (three-dimensional space and time) provides a unique opportunity to obtain preclinical quantitative functional lung images. Only single-scan measurements in non-survival studies have been obtained to date; thus, methodologies enabling animal survival for repeated imaging to be accomplished over weeks or months from the same animal would establish new opportunities for the assessment of pathophysiology drivers and treatment response in advanced preclinical drug-screening efforts. Methods: An anesthesia protocol developed for animal recovery to allow for repetitive, longitudinal scanning of individual animals over time. Test–retest imaging scans from the lungs of healthy mice were performed over 8 weeks to assess the repeatability of scanner-derived quantitative imaging metrics and variability. Results: Using a murine model of fibroproliferative lung disease, this longitudinal scanning approach captured heterogeneous progressive changes in pulmonary function, enabling the visualization and quantitative measurement of averaged whole lung metrics and spatial/regional change. Radiation dosimetry studies evaluated the effects of imaging acquisition protocols on X-ray dosage to further adapt protocols for the minimization of radiation exposure during repeat imaging sessions using these newly developed image acquisition protocols. Conclusions: Overall, we have demonstrated that the 4DXV advanced imaging scanner allows for repeat measurements from the same animal over time to enable the high-resolution, noninvasive mapping of quantitative lung airflow dysfunction in mouse models with heterogeneous pulmonary disease. The animal anesthesia and image acquisition protocols described will serve as the foundation on which further applications of the 4DXV technology can be used to study a diverse array of murine pulmonary disease models. Together, 4DXV provides a novel and significant advancement for the longitudinal, noninvasive interrogation of pulmonary disease to assess spatial/regional disease initiation, progression, and response to therapeutic interventions. Full article
Show Figures

Figure 1

32 pages, 3829 KB  
Article
Summary Results of Radon-222 Activity Monitoring in Karst Caves in Bulgaria
by Petar Stefanov, Karel Turek and Ludmil Tsankov
Geosciences 2025, 15(10), 378; https://doi.org/10.3390/geosciences15100378 - 1 Oct 2025
Viewed by 593
Abstract
Cave systems are a kind of natural laboratory for interdisciplinary research on karstogenesis in the context of global changes. In this study, we investigate the concentration of 222Rn at 65 points in 37 representative caves of Bulgarian karst through continuous monitoring with [...] Read more.
Cave systems are a kind of natural laboratory for interdisciplinary research on karstogenesis in the context of global changes. In this study, we investigate the concentration of 222Rn at 65 points in 37 representative caves of Bulgarian karst through continuous monitoring with passive and active detectors with a duration of 1 to 13 years. The concentration changes strongly both in the long term and seasonally, with values from 0.1 to 13 kBq m−3. These variations are analyzed from different perspectives (location and morphological features of the cave system, cave climate, ventilation regime, etc.). The seasonal change in the direction and intensity of ventilation is a leading factor determining the gas composition of the cave atmosphere during the year. Parallel measurements of 222Rn and CO2 concentrations in the cave air show that both gases have a similar seasonal fluctuation. Cases of coincidences of an anomalous increase in the concentration of 222Rn with manifestations of seismic activity and micro-displacements along tectonic cracks in the caves have also been registered. The dependencies between the 222Rn concentration in the caves and in the soil above them are also discussed, as well as the possible connections between global trends in climate change and trends in 222Rn emissions. Special attention is paid to the risks of radiation exposure in show caves. A calculation procedure has been developed to achieve the realistic assessment of the effective dose of cave guides. It is based on information about the annual course of the 222Rn concentration in the respective cave and the time schedule of the guides’ stay in it. The calculation showed that the effective dose may exceed the permitted limits, and it is thus necessary to control it. Full article
Show Figures

Figure 1

17 pages, 5897 KB  
Article
Testing the Potential of Magnetic Resonance Dosimetry: The Case of Lithium Carbonate
by Alexander Shames, Alexander Panich, Lonia Friedlander, Olga Iliashevsky, Haim Cohen and Raymond Moreh
Materials 2025, 18(17), 3986; https://doi.org/10.3390/ma18173986 - 26 Aug 2025
Viewed by 821
Abstract
Magnetic resonance techniques are powerful, nondestructive, non-invasive tools with broad applications in radiation dosimetry. Electron paramagnetic resonance (EPR) enables direct quantification of dose-dependent radiation-induced paramagnetic defects, while nuclear magnetic resonance (NMR) reflects the influence of such defects through changes in line width and [...] Read more.
Magnetic resonance techniques are powerful, nondestructive, non-invasive tools with broad applications in radiation dosimetry. Electron paramagnetic resonance (EPR) enables direct quantification of dose-dependent radiation-induced paramagnetic defects, while nuclear magnetic resonance (NMR) reflects the influence of such defects through changes in line width and nuclear spin relaxation. To date, these methods have typically been applied independently. Their combined use to probe radiation damage in the same material offers new opportunities for comprehensive characterization and preferred dosimetry techniques. In this work, we apply both EPR and NMR to investigate radiation damage in lithium carbonate (Li2CO3). A detailed EPR analysis of γ-irradiated samples shows that the concentration of paramagnetic defects increases with dose, following two distinct linear regimes: 10–100 Gy and 100–1000 Gy. A gradual decay of the EPR signal was observed over 40 days, even under cold storage. In contrast, 7Li NMR spectra and spin–lattice relaxation times in Li2CO3 exhibit negligible sensitivity to radiation doses up to 1000 Gy, while 1H NMR results remain inconclusive. Possible mechanisms underlying these contrasting behaviors are discussed. Full article
(This article belongs to the Special Issue Radiation Damage and Radiation Defects of Materials)
Show Figures

Graphical abstract

14 pages, 2568 KB  
Review
Total Body Irradiation in Haematopoietic Stem Cell Transplantation: A Comprehensive Literature Review and Institutional Experience from the Policlinico of Catania
by Maria Chiara Lo Greco, Roberto Milazzotto, Grazia Acquaviva, Rocco Luca Emanuele Liardo, Giorgia Marano, Madalina La Rocca, Antonio Basile, Pietro Valerio Foti, Stefano Palmucci, Emanuele David, Corrado Iní, Lorenzo Aliotta, Vincenzo Salamone, Viviana Anna La Monaca, Stefano Pergolizzi and Corrado Spatola
Medicina 2025, 61(9), 1503; https://doi.org/10.3390/medicina61091503 - 22 Aug 2025
Viewed by 909
Abstract
Background and Objectives: Total body irradiation (TBI) remains a cornerstone of conditioning for allogeneic haematopoietic stem-cell transplantation (HSCT). Whereas early research debated the need for irradiation, contemporary investigations focus on optimising dose, fractionation and delivery techniques. Material and Methods: We synthesised [...] Read more.
Background and Objectives: Total body irradiation (TBI) remains a cornerstone of conditioning for allogeneic haematopoietic stem-cell transplantation (HSCT). Whereas early research debated the need for irradiation, contemporary investigations focus on optimising dose, fractionation and delivery techniques. Material and Methods: We synthesised six decades of evidence, spanning from single-fraction cobalt treatments to modern helical tomotherapy and intensity-modulated total-marrow/lymphoid irradiation (TMI/TMLI). To complement the literature, we reported our institutional experience on 77 paediatric and adult recipients treated with conventional extended-source-to-skin-distance TBI at the University Hospital Policlinico “G. Rodolico–San Marco” between 2015 and 2025. Results: According to literature data, fractionated myeloablative schedules, typically 12 Gy in 6 fractions, provide superior overall survival and lower rates of severe graft-versus-host disease (GVHD) compared with historical single-dose regimens. Conversely, reduced-intensity protocols of 2–4 Gy broaden HSCT eligibility for older or comorbid patients with acceptable toxicity. Conformal planning reliably decreases mean lung dose without compromising engraftment, and early-phase trials are testing selective escalation to 16–20 Gy or omission of TBI in molecularly favourable cases. With regard to our institutional retrospective series, 92% of patients completed a 12-Gy regimen with only transient grade 1–2 nausea, fatigue or hypotension; all transplanted patients engrafted, and no grade ≥ 3 radiation pneumonitis occurred. Conclusions: Collectively, the published evidence and our experience support TBI as an irreplaceable component of HSCT conditioning and suggest that coupling it with advanced imaging, organ-sparing dosimetry and molecular response monitoring can deliver safer, more personalised therapy in the coming decade. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

14 pages, 3185 KB  
Article
Cumulative Dose Analysis in Adaptive Carbon Ion Radiotherapy for Locally Advanced Non-Small Cell Lung Cancer
by Zhuojun Ju, Makoto Sakai, Xiangdi Meng, Nobuteru Kubo, Hidemasa Kawamura and Tatsuya Ohno
Cancers 2025, 17(16), 2709; https://doi.org/10.3390/cancers17162709 - 20 Aug 2025
Viewed by 974
Abstract
Objectives: This study aimed to assess the precision of dose delivery to the target in adaptive carbon ion radiotherapy (CIRT) for locally advanced non-small cell lung cancer (LA-NSCLC) in cumulative dosimetry. Methods: Forty-six patients who received CIRT were included (64 Gy[relative biological [...] Read more.
Objectives: This study aimed to assess the precision of dose delivery to the target in adaptive carbon ion radiotherapy (CIRT) for locally advanced non-small cell lung cancer (LA-NSCLC) in cumulative dosimetry. Methods: Forty-six patients who received CIRT were included (64 Gy[relative biological effectiveness, RBE] in 16 fractions) with treatment plan computed tomography (CT) and weekly CT scans. Offline adaptive radiotherapy (ART) was administered if the dose distribution significantly worsened. Daily doses were calculated from weekly CTs and integrated into plan CT scans using deformable image registration. The dosimetry parameters were compared between the as-scheduled plan and adaptive replan in patients receiving ART. Survival outcomes and toxicity were compared between the ART and non-ART groups. Results: ART was implemented for 27 patients in whom adaptive replans significantly increased the median V98% of the clinical tumor volume from 96.5% to 98.1% and D98% from 60.5 to 62.7 Gy(RBE) compared with the as-scheduled plans (p < 0.001). The conformity and uniformity of the dose distribution improved (p < 0.001), with no significant differences in the doses to normal tissues (lungs, heart, esophagus, and spinal cord) from the as-scheduled plans (p > 0.05). The ART and non-ART groups demonstrated comparable local control, progression-free survival, and overall survival (p > 0.05). No grade 3 or higher radiation-related toxicities were observed. Conclusions: ART enhanced target dose coverage while maintaining acceptable normal tissue exposure, supporting weekly CT monitoring integration during CIRT for the timely intervention for anatomical variations, ensuring precise dose delivery in LA-NSCLC. Full article
(This article belongs to the Special Issue New Approaches in Radiotherapy for Cancer)
Show Figures

Figure 1

13 pages, 3304 KB  
Article
ANN-Based Prediction of OSL Decay Curves in Quartz from Turkish Mediterranean Beach Sand
by Mehmet Yüksel, Fırat Deniz and Emre Ünsal
Crystals 2025, 15(8), 733; https://doi.org/10.3390/cryst15080733 - 19 Aug 2025
Viewed by 1234
Abstract
Quartz is a widely used mineral in dosimetric and geochronological applications due to its stable luminescence properties under ionizing radiation. This study presents an artificial neural network (ANN)-based approach to predict the optically stimulated luminescence (OSL) decay curves of quartz extracted from Mediterranean [...] Read more.
Quartz is a widely used mineral in dosimetric and geochronological applications due to its stable luminescence properties under ionizing radiation. This study presents an artificial neural network (ANN)-based approach to predict the optically stimulated luminescence (OSL) decay curves of quartz extracted from Mediterranean beach sand samples in Turkey. Experimental OSL signals were obtained from quartz samples irradiated with beta doses ranging from 0.1 Gy to 1034.9 Gy. The dataset was used to train ANN models with three different learning algorithms: Levenberg–Marquardt (LM), Bayesian Regularization (BR), and Scaled Conjugate Gradient (SCG). Forty-seven decay curves were used for training and three for testing. The ANN models were evaluated based on regression accuracy, training–validation–test performance, and their predictive capability for low, medium, and high doses (1 Gy, 72.4 Gy, 465.7 Gy). The results showed that BR achieved the highest overall regression (R = 0.99994) followed by LM (R = 0.99964) and SCG (R = 0.99820), confirming the superior generalization and fits across all dose ranges. LM performs optimally at low-to-moderate doses, and SCG delivers balanced yet slightly noisier predictions. The proposed ANN-based method offers a robust and effective alternative to conventional kinetic modeling approaches for analyzing OSL decay behavior and holds considerable potential for advancing luminescence-based retrospective dosimetry and OSL dating applications. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

Back to TopTop