Femtosecond Laser Direct Writing of Antireflection Microstructures on the Front and Back Sides of a GaSe Crystal
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. ARM Morphology
3.2. Transmission Spectra
3.3. Raman Spectra
3.4. Photolumenescence Spectra
3.5. Numerical Simulation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nikogosyan, D. Nonlinear Optical Crystals: A Complete Survey; Springer: New York, NY, USA, 2005; ISBN 0-387-22022-4. [Google Scholar]
- Voevodin, V.G.; Voevodina, O.V.; Bereznaya, S.A.; Korotchenko, Z.V.; Morozov, A.N.; Sarkisov, S.Y.; Fernelius, N.C.; Goldstein, J.T. Large single crystals of gallium selenide: Growing, doping by In and characterization. Opt. Mater. 2004, 26, 495–499. [Google Scholar] [CrossRef]
- Singh, N.B.; Suhre, D.R.; Balakrishna, V.; Marable, M.; Meyer, R.; Fernelius, N.; Hopkins, F.K.; Zelmon, D. Far-infrared conversion materials: Gallium selenide for far-infrared conversion applications. Prog. Cryst. Growth Charact. Mater. 1998, 37, 47–102. [Google Scholar] [CrossRef]
- Wang, T.; Li, J.; Zhao, Q.; Yin, Z.; Zhang, Y.; Chen, B.; Xie, Y.; Jie, W. High-quality GaSe single crystal grown by the Bridgman method. Materials 2018, 11, 186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Late, D.J.; Liu, B.; Luo, J.; Yan, A.; Matte, H.S.S.R.; Grayson, M.; Rao, C.N.R.; Dravid, V.P. GaS and GaSe ultrathin layer transistors. Adv. Mater. 2012, 24, 3549–3554. [Google Scholar] [CrossRef] [PubMed]
- Shigetomi, S.; Ikari, T. Electrical and photovoltaic properties of Cu-doped p-GaSe/n-InSe heterojunction. J. Appl. Phys. 2000, 88, 1520–1524. [Google Scholar] [CrossRef]
- Bernier, G.; Jandl, S.; Provencher, R. Spontaneous and stimulated photoluminescence of GaSe in the energy range 2.075–2.125 eV. J. Lumin. 1986, 35, 289–300. [Google Scholar] [CrossRef]
- Basov, N.G.; Bogdankevich, O.V.; Pechenov, A.N.; Abdullaev, G.B.; Akhundov, G.A.; Salaev, E.Y. Stimulated emission in a GaSe single crystal when excited by fast electrons. Sov. Phys. Dokl. 1965, 10, 329–333. [Google Scholar]
- Hulliger, F. Structural Chemistry of Layer-Type Phases; Lévy, F., Ed.; Springer: Dordrecht, The Netherlands, 1976; ISBN 978-94-010-1148-8. [Google Scholar]
- Maschke, K.; Levy, F. New Series, Group III: Crystal and Solid State Physics; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Chattopadhyay, S.; Huang, Y.F.; Jen, Y.J.; Ganguly, A.; Chen, K.H.; Chen, L.C. Anti-reflecting and photonic nanostructures. Mater. Sci. Eng. R Rep. 2010, 69, 1–35. [Google Scholar] [CrossRef]
- Choy, T.C. Effective Medium Theory: Principles and Applications; Oxford University Press: Oxford, UK, 2015; ISBN 9780198705093. [Google Scholar]
- Rayleigh, L. On Reflection of Vibrations at the Confines of two Media between which the Transition is Gradual. Proc. Lond. Math. Soc. 1879, s1-11, 51–56. [Google Scholar] [CrossRef]
- Bushunov, A.A.; Tarabrin, M.K.; Lazarev, V.A. Review of Surface Modification Technologies for Mid-Infrared Antireflection Microstructures Fabrication. Laser Photonics Rev. 2021, 15, 2000202. [Google Scholar] [CrossRef]
- Bushunov, A.A.; Teslenko, A.A.; Tarabrin, M.K.; Lazarev, V.A.; Isaenko, L.I.; Eliseev, A.P.; Lobanov, S.I. Fabrication of antireflection microstructures on the surface of GaSe crystal by single-pulse femtosecond laser ablation. Opt. Lett. 2020, 45, 5994. [Google Scholar] [CrossRef] [PubMed]
- Yelisseyev, A.P.; Isaenko, L.I.; Lobanov, S.I.; Dostovalov, A.V.; Bushunov, A.A.; Tarabrin, M.K.; Teslenko, A.A.; Lazarev, V.A.; Shklyaev, A.A.; Babin, S.A.; et al. Effect of antireflection microstructures on the optical properties of GaSe. Opt. Mater. Express 2022, 12, 1593. [Google Scholar] [CrossRef]
- Beechem, T.E.; Kowalski, B.M.; Brumbach, M.T.; McDonald, A.E.; Spataru, C.D.; Howell, S.W.; Ohta, T.; Pask, J.A.; Kalugin, N.G. Oxidation of ultrathin GaSe. Appl. Phys. Lett. 2015, 107, 173103. [Google Scholar] [CrossRef]
- Hoff, R.M.; Irwin, J.C. Raman scattering in GaSe. Phys. Rev. B 1974, 10, 3464–3470. [Google Scholar] [CrossRef]
- Schlüter, M. The electronic structure of GaSe. Nuovo Cim. 1973, 13, 313–360. [Google Scholar] [CrossRef]
- Depeursinge, Y. Electronic properties of the layer III-VI semiconductors. A comparative study. Nuovo Cim. 1981, 64, 111–150. [Google Scholar] [CrossRef]
- Aulich, E.; Brebner, J.L.; Mooser, E. Indirect Energy Gap in GaSe and GaS. Phys. Stat. Sol. B 1969, 31, 129–131. [Google Scholar] [CrossRef]
- Tagiev, B.G.; Niftiev, G.M.; Abushov, S.A. Photoluminescence of GaSe: Mn Single Crystals. Phys. Stat. Sol. B 1984, 121, K195–K199. [Google Scholar] [CrossRef]
- Cingolani, A.; Evangelisti, F.; Minafra, A.; Rizzo, A. Photoluminescence of GaSe. Phys. Stat. Sol. A 1973, 17, 449–454. [Google Scholar]
- Kato, K.; Tanno, F.; Umemura, N. Sellmeier and thermo-optic dispersion formulas for GaSe (Revisited). Appl. Opt. 2013, 52, 2325. [Google Scholar] [CrossRef]
- Rebien, M.; Henrion, W.; Hong, M.; Mannaerts, J.P.; Fleischer, M. Optical properties of gallium oxide thin films. Appl. Phys. Lett. 2002, 81, 250–252. [Google Scholar] [CrossRef]
Number of Pulses, N | Cross-Point Wavelength, μm | Transmission at 10.6 μm, % | Maximal Transmission,% (at Wavelength), µm |
---|---|---|---|
1 | 4.35 | 68.2 | 69.0 (8.03) |
3 | 6.02 | 76.1 | 76.8 (8.92) |
5 | 6.51 | 83.3 | 83.5 (9.5) |
8 | 6.90 | 91.7 | 94.1 (12.3) |
T = 80 K | |||
---|---|---|---|
NN | Eg, eV | Wavelength, nm | FWHM, meV |
1 | 2.066 | 599.95 | 16 |
2 | 2.083 | 595.0 | 17 |
3 | 2.085 | 594.5 | 17 |
4 | 2.0855 | 594.3 | 4 |
5 | 2.0907 | 592.7 | 2.5 |
6 | 2.090 | 593.1 | 10 |
7 | 2.104 | 589.1 | 12 |
T = 300 K | |||
NN | Eg, eV | Wavelength, nm | FWHM, meV |
1 | 1.998 | 620.4 | 18 |
2 | 2.0045 | 618.3 | 51 |
T = 80 K | |||
---|---|---|---|
NN | Eg, eV | Wavelength, nm | FWHM, meV |
1 | 1.951 | 635 | 171 |
2 | 2.033 | 609.6 | 30 |
3 | 2.073 | 597.9 | 37 |
4 | 2.086 | 594.2 | 12 |
5 | 2.101 | 589.9 | 18 |
T = 300 K | |||
NN | Eg, eV | Wavelength, nm | FWHM, meV |
1 | 1.658 | 747.6 | 175 |
2 | 1.833 | 676.2 | 93 |
3 | 1.981 | 625.7 | 47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yelisseyev, A.; Fedyaj, V.; Simonov, V.; Isaenko, L.; Lobanov, S.; Shklyaev, A.; Simanchuk, A.; Babin, S.; Dostovalov, A. Femtosecond Laser Direct Writing of Antireflection Microstructures on the Front and Back Sides of a GaSe Crystal. Photonics 2022, 9, 774. https://doi.org/10.3390/photonics9100774
Yelisseyev A, Fedyaj V, Simonov V, Isaenko L, Lobanov S, Shklyaev A, Simanchuk A, Babin S, Dostovalov A. Femtosecond Laser Direct Writing of Antireflection Microstructures on the Front and Back Sides of a GaSe Crystal. Photonics. 2022; 9(10):774. https://doi.org/10.3390/photonics9100774
Chicago/Turabian StyleYelisseyev, Alexander, Vladislav Fedyaj, Victor Simonov, Ludmila Isaenko, Sergey Lobanov, Alexander Shklyaev, Andrey Simanchuk, Sergey Babin, and Alexander Dostovalov. 2022. "Femtosecond Laser Direct Writing of Antireflection Microstructures on the Front and Back Sides of a GaSe Crystal" Photonics 9, no. 10: 774. https://doi.org/10.3390/photonics9100774
APA StyleYelisseyev, A., Fedyaj, V., Simonov, V., Isaenko, L., Lobanov, S., Shklyaev, A., Simanchuk, A., Babin, S., & Dostovalov, A. (2022). Femtosecond Laser Direct Writing of Antireflection Microstructures on the Front and Back Sides of a GaSe Crystal. Photonics, 9(10), 774. https://doi.org/10.3390/photonics9100774