Broadband Polarization Rotator and Splitter Based on 70 nm-Etched Waveguides on SOI Platform
Abstract
1. Introduction
2. Device Design
3. Fabrication and Measurement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baehr-Jones, T.; Pinguet, T.; Lo Guo-Qiang, P.; Danziger, S.; Prather, D.; Hochberg, M. Myths and rumours of silicon photonics. Nat. Photonics 2012, 6, 206–208. [Google Scholar] [CrossRef]
- Shi, W.; Tian, Y.; Gervais, A. Scaling capacity of fiber-optic transmission systems via silicon photonics. Nanophotonics 2020, 9, 4629–4663. [Google Scholar] [CrossRef]
- Tian, Y.; Qiu, J.; Liu, C.; Tian, S.; Huang, Z.; Wu, J. Compact polarization beam splitter with a high extinction ratio over S+ C+ L band. Opt. Express 2019, 27, 999–1009. [Google Scholar] [CrossRef] [PubMed]
- Mao, S.; Cheng, L.; Zhao, C.; Fu, H. Ultra-broadband and ultra-compact polarization beam splitter based on a tapered subwavelength-grating waveguide and slot waveguide. Opt. Express 2021, 29, 28066–28077. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Dai, D.; Bowers, J.E. Ultra-broadband and low-loss polarization beam splitter on silicon. In Optical Fiber Communication Conference; Optical Society of America: Washington, DC, USA, 2020; p. Th1A.4. [Google Scholar]
- Ao, X.; He, S. Polarization beam splitters based on a two-dimensional photonic crystal of negative refraction. Opt. Lett. 2005, 30, 2152–2154. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Chen, M.; Xiao, S. Wide-angle polarization selectivity based on anomalous defect mode in photonic crystal containing hyperbolic metamaterials. Opt. Lett. 2022, 47, 2153–2156. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Zhang, J.; Fan, W.; Lu, Y.; Peng, N.; Rottwitt, K.; Ou, H. Compact low-birefringence polarization beam splitter using vertical-dual-slot waveguides in silicon carbide integrated platforms. Photonics Res. 2022, 10, A8–A13. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, X.; Zhang, Z.; Guo, K.; Yang, J. Ultra-compact, efficient and high-polarization-extinction-ratio polarization beam splitters based on photonic anisotropic metamaterials. Opt. Express 2022, 30, 538–549. [Google Scholar] [CrossRef]
- Yu, Z.; Xu, H.; Liu, D.; Li, H.; Shi, Y.; Dai, D. Subwavelength-Structure-Assisted Ultracompact Polarization-Handling Components on Silicon. J. Light. Technol. 2022, 40, 1784–1801. [Google Scholar] [CrossRef]
- Liu, C.; Qiu, J.; Tian, Y.; Guo, H.; Hong, X.; Wu, J. Performance Enhancement of a Broadband Polarization Rotator by using Modified Mode Converters. In Asia Communications and Photonics Conference; Optical Society of America: Washington, DC, USA, 2018; p. Su2A–171. [Google Scholar]
- Xu, H.; Shi, Y. Subwavelength-grating-assisted silicon polarization rotator covering all optical communication bands. Opt. Express 2019, 27, 5588–5597. [Google Scholar] [CrossRef]
- Lebbe, N.; Glière, A.; Hassan, K. High-efficiency and broadband photonic polarization rotator based on multilevel shape optimization. Opt. Lett. 2019, 44, 1960–1963. [Google Scholar] [CrossRef]
- Gallacher, K.; Griffin, P.F.; Riis, E.; Sorel, M.; Paul, D.J. Silicon nitride waveguide polarization rotator and polarization beam splitter for chip-scale atomic systems. APL Photonics 2022, 7, 046101. [Google Scholar] [CrossRef]
- Yan, X.; Chen, J.; Dai, D.; Shi, Y. Polarization multiplexing silicon-photonic optical phased array for 2D wide-angle optical beam steering. IEEE Photonics J. 2021, 13, 1–6. [Google Scholar] [CrossRef]
- Dong, P.; Chen, Y.K.; Duan, G.H.; Neilson, D.T. Silicon photonic devices and integrated circuits. Nanophotonics 2014, 3, 215–228. [Google Scholar] [CrossRef]
- Ma, M.; Park, A.H.; Wang, Y.; Shoman, H.; Zhang, F.; Jaeger, N.A.; Chrostowski, L. Sub-wavelength grating-assisted polarization splitter-rotators for silicon-on-insulator platforms. Opt. Express 2019, 27, 17581–17591. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, Q.; He, Y.; Su, Y. Silicon polarization splitter and rotator with tolerance to width variations using a nonlinearly-tapered and partially-etched directional coupler. In Optical Fiber Communication Conference; Optical Society of America: Washington, DC, USA, 2019; p. W1E.4. [Google Scholar]
- Xie, C.; Zou, X.; Zou, F.; Zhang, Y. High-performance ultra-compact polarization splitter-rotators based on dual-etching and tapered asymmetrical directional coupler. Chin. Opt. Lett. 2021, 19, 121301. [Google Scholar] [CrossRef]
- Sacher, W.D.; Barwicz, T.; Taylor, B.J.; Poon, J.K. Polarization rotator-splitters in standard active silicon photonics platforms. Opt. Express 2014, 22, 3777–3786. [Google Scholar] [CrossRef]
- Chen, X.; Qiu, C.; Sheng, Z.; Wu, A.; Huang, H.; Zhao, Y.; Li, W.; Wang, X.; Zou, S.; Gan, F.; et al. Design of an ultra-broadband and fabrication-tolerant silicon polarization rotator splitter with SiO2 top cladding. Chin. Opt. Lett. 2016, 14, 081301–81305. [Google Scholar] [CrossRef][Green Version]
- Zhao, Y.; Qiu, C.; Wu, A.; Huang, H.; Li, J.; Sheng, Z.; Li, W.; Wang, X.; Gan, F. Broadband polarization splitter-rotator and the application in WDM receiver. IEEE Photonics J. 2018, 11, 1–10. [Google Scholar] [CrossRef]
- El-Fiky, E.; Wang, Y.; Bernal, S.; Gamache, C.; Panorel, E.; Kumar, A.; Samani, A.; Jacques, M.; Koh, P.c.; Plant, D.V. High extinction ratio and broadband O-band polarization splitter and rotator on silicon-on-insulator. In Proceedings of the 2019 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 3–7 March 2019; pp. 1–3. [Google Scholar]
- Chen, Z.; Yang, J.; Wong, W.H.; Pun, E.Y.B.; Wang, C. Broadband adiabatic polarization rotator-splitter based on a lithium niobate on insulator platform. Photonics Res. 2021, 9, 2319–2324. [Google Scholar] [CrossRef]
- Sun, C.; Yu, Y.; Chen, G.; Zhang, X. A low crosstalk and broadband polarization rotator and splitter based on adiabatic couplers. IEEE Photonics Technol. Lett. 2016, 28, 2253–2256. [Google Scholar] [CrossRef]
- Rostamian, A.; Guo, J.; Chakravarty, S.; Yan, H.; Chung, C.J.; Heidari, E.; Chen, R.T. Grating-coupled silicon-on-sapphire polarization rotator operating at mid-infrared wavelengths. IEEE Photonics Technol. Lett. 2019, 31, 401–404. [Google Scholar] [CrossRef]
- Chen, D.; Liu, M.; Zhang, Y.; Wang, L.; Hu, X.; Feng, P.; Xiao, X.; Yu, S. C+ L band polarization rotator-splitter based on a compact S-bend waveguide mode demultiplexer. Opt. Express 2021, 29, 10949–10957. [Google Scholar] [CrossRef]
- Dai, D.; Wu, H. Realization of a compact polarization splitter-rotator on silicon. Opt. Lett. 2016, 41, 2346–2349. [Google Scholar] [CrossRef]
- Guo, D.; Chu, T. Broadband and low-crosstalk polarization splitter-rotator with optimized tapers. OSA Contin. 2018, 1, 841–850. [Google Scholar] [CrossRef]
- Available online: http://www.hopho.com.cn/khdzfw/31.html (accessed on 6 October 2022).
- Dai, D.; Tang, Y.; Bowers, J.E. Mode conversion in tapered submicron silicon ridge optical waveguides. Opt. Express 2012, 20, 13425–13439. [Google Scholar] [CrossRef]
Parameters | Values (m) | Parameters | Values (m) |
---|---|---|---|
0.5 | 0.95 | ||
0.1 | 0.65 | ||
1.1 | 0.2 | ||
5 | 0.5 | ||
100 | H | 0.22 | |
G | 0.2 | 0.15 |
Reference | APR Length (m) | IL (dB) | Cross-Talk (dB) | Bandwidth (nm) | Etching Depth (nm) | Exp./Sim. |
---|---|---|---|---|---|---|
[20] | 100 | 1.6 | −13 | 50 | 220/130 | Experiment |
[21] | 53.5 | 0.2 | −15 | 320 | 220/130 | Simulation |
[22] | 53.5 | 0.73 | −12.1 | 110 | 220/130 | Experiment |
[25] | 70 | 1 | −14 | 100 | 220/130 | Experiment |
[27] | 100 | 0.6 | −17.6 | 110 | 220/70 | Experiment |
This work | 30 | 1 | −20 | 200 | 220/70 | Simulation |
This work | 30 | 1.5 | −20 | 75 | 220/70 | Experiment |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Kang, Z.; Dai, T.; Xu, P.; Li, Y.; Lv, Y.; Zhang, X. Broadband Polarization Rotator and Splitter Based on 70 nm-Etched Waveguides on SOI Platform. Photonics 2022, 9, 758. https://doi.org/10.3390/photonics9100758
Tian Y, Kang Z, Dai T, Xu P, Li Y, Lv Y, Zhang X. Broadband Polarization Rotator and Splitter Based on 70 nm-Etched Waveguides on SOI Platform. Photonics. 2022; 9(10):758. https://doi.org/10.3390/photonics9100758
Chicago/Turabian StyleTian, Ye, Zhe Kang, Tingge Dai, Peipeng Xu, Yan Li, Yegang Lv, and Xiaowei Zhang. 2022. "Broadband Polarization Rotator and Splitter Based on 70 nm-Etched Waveguides on SOI Platform" Photonics 9, no. 10: 758. https://doi.org/10.3390/photonics9100758
APA StyleTian, Y., Kang, Z., Dai, T., Xu, P., Li, Y., Lv, Y., & Zhang, X. (2022). Broadband Polarization Rotator and Splitter Based on 70 nm-Etched Waveguides on SOI Platform. Photonics, 9(10), 758. https://doi.org/10.3390/photonics9100758