Characterization of Cubic Zirconia as a Lens Material Suitable for Autonomous Driving
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication and Phase Analysis of Cubic Zirconia Samples
2.2. Transmittance Measurement of the Fabricated CZs
2.3. The Effect of Temperature on Refractive Index and Dispersion of CZ Ceramics
2.4. Measurement of the Coefficient of Thermal Expansion of the CZ Materials
2.5. External Impact Test on the CZ Materials
3. Results and Discussion
3.1. Transmittance Characteristics of the Fabricated CZ Samples in Visible to NIR Range
3.2. Dispersion and Temperture Coefficient of the Refractive Index of the Fabricated CZ
3.3. The Coefficient of Thermal Expansion of the Fabricated CZ
3.4. External Shock Effect on Fabricated CZ
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Côté, G.; Lalonde, J.-F.; Thibault, S. Extrapolating from lens design databases using deep learning. Opt. Express 2019, 27, 28279–28292. [Google Scholar] [CrossRef] [PubMed]
- Zuo, C.; Qian, J.; Feng, S.; Yin, W.; Li, Y.; Fan, P.; Han, J.; Qian, K.; Chen, Q. Deep learning in optical metrology: A review. Light Sci. Appl. 2022, 11, 39. [Google Scholar] [CrossRef]
- Sahin, F.E. Long-Range, High-Resolution Camera Optical Design for Assisted and Autonomous Driving. Photonics 2019, 6, 73. [Google Scholar] [CrossRef]
- Makhataeva, Z.; Varol, H.A. Augmented Reality for Robotics: A Review. Robotics 2020, 9, 21. [Google Scholar] [CrossRef]
- Kukkala, V.K.; Tunnell, J.; Pasricha, S.; Bradley, T. Advanced Driver-Assistance Systems: A Path Toward Autonomous Vehicles. IEEE Consum. Electron. Mag. 2018, 7, 18–25. [Google Scholar] [CrossRef]
- Silva, V.D.; Roche, J.; Kondoz, A. Fusion of LiDAR and Camera Sensor Data for Environment Sensing in Driverless Vehicles. Loughborough University. Available online: https://hdl.handle.net/2134/33170 (accessed on 8 July 2022).
- Rasshofer, R.H.; Spies, M.; Spies, H. Influences of weather phenomena on automotive laser radar systems. Adv. Radio Sci. 2011, 9, 49–60. [Google Scholar] [CrossRef]
- Optical Glass for Automotive Cameras. Available online: https://www.oharacorp.com/optical-glass-for-automotive-cameras.html (accessed on 8 July 2022).
- Available online: http://www.hoya-opticalworld.com/english/news/index.html (accessed on 24 August 2022).
- Xiao, Z.; Yu, S.; Li, Y.; Ruan, S.; Kong, L.B.; Huang, Q.; Huang, Z.; Zhou, K.; Su, H.; Yao, Z.; et al. Materials development and potential applications of transparent ceramics: A review. Mater. Sci. Eng. R Rep. 2020, 139, 100518. [Google Scholar] [CrossRef]
- Fahrenholtz, W.G.; Hilmas, G.E. Ultra-high temperature ceramics: Materials for extreme environments. Scr. Mater. 2017, 129, 94–99. [Google Scholar] [CrossRef]
- Wuchina, E.; Opila, E.; Opeka, M.; Fahrenholtz, W.; Talmy, I. UHTCs: Ultra-High Temperature Ceramic Materials for Extreme Environment Applications. Electrochem. Soc. Interface. 2007, 16, 30–36. [Google Scholar] [CrossRef]
- Heiroth, S.; Ghisleni, R.; Lippert, T.; Michler, J.; Wokaun, A. Optical and mechanical properties of amorphous and crystalline yttria-stabilized zirconia thin films prepared by pulsed laser deposition. Acta Mater. 2011, 59, 2330–2340. [Google Scholar] [CrossRef]
- Krell, A.; Klimke, J.; Hutzler, T. Transparent compact ceramics: Inherent physical issues. Opt. Mater. 2009, 31, 1144–1150. [Google Scholar] [CrossRef]
- Nazir, M.A.; Mahmood, T.; Zafar, A.A.; Akhtar, N.; Hussain, T.; Saeed, M.A.; Aleem, F.; Saeed, A.; Raza, J.; Cao, C. Electronic, optical and elastic properties of cubic zirconia (c-ZrO2) under pressure: A DFT study. Physica B 2021, 604, 412462. [Google Scholar] [CrossRef]
- Iosif, L.; Barbinta-Patrascu, M.E.; Ispas, A. Zirconia, from optoelectronics to oral environment applicability. J. Optoelectron. Adv. Mater. 2020, 22, 635–646. [Google Scholar]
- Wang, C.; Mao, X.; Peng, Y.-P.; Jiang, B.; Fan, J.; Xu, Y.; Zhang, L.; Zhao, J. Preparation and Optical Properties of Infrared Transparent 3Y-TZP Ceramics. Materials 2017, 10, 390. [Google Scholar] [CrossRef] [PubMed]
- Horti, N.C.; Kamatagi, M.D.; Nataraj, S.K.; Wari, M.N.; Inamdar, S.R. Structural and optical properties of zirconium oxide (ZrO2) nanoparticles: Effect of calcination temperature. Nano Express 2020, 1, 010022. [Google Scholar] [CrossRef]
- Lomonova, E.E.; Osiko, V.V. Growth of Zirconia Crystals by Skull-Melting Technique; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2003. [Google Scholar]
- Xu, J.; Lei, X.; Jiang, X.; He, Q.; Fang, Y.; Zhang, D.; He, X. Industrial growth of yttria-stabilized cubic zirconia crystals by skull melting process. J. Rare Earths 2009, 27, 971–974. [Google Scholar] [CrossRef]
- Borik, M.A.; Bredikhin, S.I.; Bublik, V.T.; Kulebyakin, A.V.; Kuritsyna, I.E.; Lomonova, E.E.; Milovich, P.O.; Myzina, V.A.; Osiko, V.V.; Ryabochkina, P.A.; et al. Structure and conductivity of yttria and scandia-doped zirconia crystals grown by skull melting. J. Am. Ceram. Soc. 2017, 100, 5536. [Google Scholar] [CrossRef]
- Kim, H.; Moon, J.Y.; Lee, J.-H.; Lee, J.-K.; Heo, Y.-W.; Kim, J.-J.; Lee, H.S. Transmission Electron Microscopy Study of 3.2 YSZ Single Crystals Manufactured by the Skull Melting Method. J. Nanosci. Nanotechnol. 2014, 14, 7961. [Google Scholar] [CrossRef]
- Berendts, S.; Eufinger, J.-P.; Valov, I.; Janek, J.; Lerch, M. Ionic conductivity of low yttria-doped cubic zirconium oxide nitride single crystals. Solid State Ion. 2016, 296, 42–46. [Google Scholar] [CrossRef]
- Suárez, M.; Fernández, A.; Menéndez, J.L.; Torrecillas, R.; Kessel, H.U.; Hennicke, J.; Kirchner, R.; Kessel, T. Challenges and Opportunities for Spark Plasma Sintering: A Key Technology for a New Generation of Materials. Sinter. Appl. 2013, 13, 319–342. [Google Scholar]
- Paygin, V.; Stepanov, S.; Dvilis, E.; Khasanov, O.; Alishin, T.; Valiev, D. Effect of technological parameters on optical and mechanical properties of SPS transparent YSZ ceramics. Ceram. Int. 2021, 47, 11169–11175. [Google Scholar] [CrossRef]
- Paygin, V.; Dvilis, E.; Stepanov, S.; Khasanov, O.; Valiev, D.; Alishin, T.; Ferrari, M.; Chiasera, A.; Mali, V.; Anisimov, A. Manufacturing optically transparent thick zirconia ceramics by spark plasma sintering with the use of collector pressing. Appl. Sci. 2021, 11, 1304. [Google Scholar] [CrossRef]
- Peuchert, U.; Okano, Y.; Menke, Y.; Reichel, S.; Ikesue, A. Transparent cubic-ZrO2 ceramics for application as optical lenses. J. Eur. Ceram. Soc. 2009, 29, 283. [Google Scholar] [CrossRef]
- Papynov, E.K.; Shichalin, O.O.; Medkov, M.A.; Grishchenko, D.N.; Tkachenko, I.A.; Fedorets, A.N.; Pechnikov, V.S.; Golub, A.V.; Buravlev, I.Y.; Tananaev, I.G.; et al. Spark Plasma Sintering of Special-Purpose Functional Ceramics Based on UO2, ZrO2, Fe3O4/α-Fe2O3. Glass Phys. Chem. 2018, 44, 632–640. [Google Scholar] [CrossRef]
- Papynov, E.K.; Shichalin, O.O.; Mayorov, V.Y.; Modin, E.B.; Portnyagin, A.S.; Tkachenko, I.A.; Belov, A.A.; Gridasova, E.A.; Tananaev, I.G.; Avramenko, V.A. Spark Plasma Sintering as a high-tech approach in a new generation of synthesis of nanostructured functional ceramics. Nanotechnol. Russ. 2017, 12, 49. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Liu, Z.-F.; Lu, J.-F.; Shen, X.-B.; Wang, F.-C.; Wang, Y.-D. The sintering mechanism in spark plasma sintering–Proof of the occurrence of spark discharge. Scr. Mater. 2014, 81, 56. [Google Scholar] [CrossRef]
- Tsukerman, S.A. Powder Metallurgy; Elsevier: Amsterdam, The Netherlands, 1965. [Google Scholar]
- Langer, J.; Hoffmann, M.J.; Guillon, O. Electric Field-Assisted Sintering in Comparison with the Hot Pressing of Yttria-Stabilized Zirconia. J. Am. Ceram. Soc. 2011, 94, 24. [Google Scholar] [CrossRef]
- Mondal, P.; Klein, A.; Jaegermann, W.; Hahn, H. Enhanced specific grain boundary conductivity in nanocrystalline Y2O3-stabilized zirconia. Solid State Ion. 1999, 118, 331. [Google Scholar] [CrossRef]
- Hu, C.; Li, F.; Qu, D.; Wang, Q.; Xie, R.; Zhang, H.; Peng, S.; Bao, Y.; Zhou, Y. Developments in hot pressing (HP) and hot isostatic pressing (HIP) of ceramic matrix composites. In Advances in Ceramic Matrix Composites; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Available online: https://www.kobelco.co.jp/english/products/ip/technology/hip.html (accessed on 24 August 2022).
- Dash, A.; Kim, B.-N.; Klimke, J.; Vleugels, J. Transparent tetragonal-cubic zirconia composite ceramics densified by spark plasma sintering and hot isostatic pressing. J. Eur. Ceram. Soc. 2019, 39, 1428. [Google Scholar] [CrossRef]
- Ergun, C. Enhanced phase stability in hydroxylapatite/zirconia composites with hot isostatic pressing. Ceram. Int. 2011, 37, 935–942. [Google Scholar] [CrossRef]
- Lach, R.; Bućko, M.M.; Haberko, K.; Sitarz, M.; Cholewa-Kowalska, K. From nanometric zirconia powder to transparent polycrystal. J. Eur. Ceram. Soc. 2014, 34, 4321. [Google Scholar] [CrossRef]
- Guo, J.; Floyd, R.; Lowum, S.; Maria, J.-P.; Beauvoir, T.H.; Seo, J.-H.; Randall, C.A. Cold Sintering: Progress, Challenges, and Future Opportunities. Annu. Rev. Mater. Res. 2019, 49, 275. [Google Scholar] [CrossRef]
- Grasso, S.; Biesuz, M.; Zoli, L.; Taveri, G.; Duff, A.I.; Ke, D.; Jiang, A.; Reece, M.J. A review of cold sintering processes. Adv. Appl. Ceram. 2020, 119, 115. [Google Scholar] [CrossRef]
- Maca, K.; Pouchly, V.; Zalud, P. Two-Step Sintering of oxide ceramics with various crystal structures. J. Eur. Ceram. Soc. 2010, 30, 583. [Google Scholar] [CrossRef]
- Guo, H.; Bayer, T.J.M.; Guo, J.; Baker, A.; Randall, C.A. Cold sintering process for 8 mol%Y2O3-stabilized ZrO2 ceramics. J. Eur. Ceram. Soc. 2017, 37, 2303. [Google Scholar] [CrossRef]
- Vasanthavel, S.; Kannan, S. Structural investigations on the tetragonal to cubic phase transformations in zirconia induced by progressive yttrium additions. J. Phys. Chem. 2018, 112, 100. [Google Scholar] [CrossRef]
- Ray, J.C.; Pati, R.K.; Pramanik, P. Chemical synthesis and structural characterization of nanocrystalline powders of pure zirconia and yttria stabilized zirconia (YSZ). J. Eur. Ceram. Soc. 2000, 20, 1289. [Google Scholar] [CrossRef]
- Krogstad, J.A.; Lepple, M.; Gao, Y.; Lipkin, D.M.; Levi, C.G. Effect of Yttria Content on the Zirconia Unit Cell Parameters. J. Am. Ceram. Soc. 2011, 94, 4548. [Google Scholar] [CrossRef]
- Pai Verneker, V.R.; Petelin, A.N.; Crowne, F.J.; DC Nagle, D.C. Color-center-induced band-gap shift in yttria-stabilized zirconia. Phys. Rev. B. 1989, 40, 8555. [Google Scholar] [CrossRef]
- Dombrovsky, L.A.; Rousseau, B.; Echegut, P.; Randrianalisoa, J.H.; Baillis, D. High Temperature Infrared Properties of YSZ Electrolyte Ceramics for SOFCs: Experimental Determination and Theoretical Modeling. J. Am. Ceram. Soc. 2011, 94, 4310–4316. [Google Scholar] [CrossRef]
- Yamashita, I.; Kudo, M.; Tsukuma, K. Development of highly transparent zirconia ceramics. TOSOH Res. Techno. Rev. 2012, 56, 11–16. [Google Scholar]
- Orliukas, A.; Bohac, P.; Sasaki, K.; Gauckler, L.J. The relaxation dispersion of the ionic conductivity in cubic zirconia. Solid State Ion. 1994, 72, 35–38. [Google Scholar] [CrossRef]
- Wood, D.L.; Nassau, K. Refractive index of cubic zirconia stabilized with yttria. Appl. Optics 1982, 21, 2978–2981. [Google Scholar] [CrossRef]
- Juškevičius, K.; Audronis, M.; Subačius, A.; Drazdys, R.; Juškenas, R.; Matthews, A.; Leyland, A. High-rate reactive magnetron sputtering of zirconia films for laser optics applications. Appl. Phys. A 2014, 116, 1229–1240. [Google Scholar] [CrossRef]
- Jenkins, F.A.; White, H.E. Fundamentals of Optics; Tata McGraw-Hill Education: New York, NY, USA, 1937. [Google Scholar]
- Ohara Catalog. Available online: https://www.oharacorp.com/catalog.html (accessed on 8 July 2022).
- Steimacher, A.; Medina, A.N.; Bento, A.C.; Rohling, J.H.; Baesso, M.L.; Reynoso, V.C.S.; Lima, S.M.; Petrovich, M.N.; Hewak, D.W. The temperature coefficient of the optical path length as a function of the temperature in different optical glasses. J. Non-Cryst. Solids. 2004, 348, 240–244. [Google Scholar] [CrossRef]
- Tropf, W.J.; Harris, T.J.; Thomas, M.E. Optical materials: Visible and infrared. In Electro-Optics Handbook; The McGraw-Hill Companies, Inc.: New York, NY, USA, 2000. [Google Scholar]
- Nuno, K.; Sugiura, K.; Ohashi, K. Lens Barrel, Camera and Mobile Information Terminal. U.S. Patent 8537478B2, 17 September 2013. [Google Scholar]
Methods | Characteristics | Refs.* |
---|---|---|
Skull Melting | A water-cooled, Cu crucible-like structure is used to surround the RF-heated molten zirconia. The temperature of this process reaches 3000 °C or higher. It produces high-purity CZ ceramics without pores due to no contact of the melt with the crucible materials [19]. | [20,21,22,23] |
Spark Plasma Sintering | The powder materials are stacked between the die and punch on the sintering stage and held between the electrodes. Under pressure and pulse energized, the temperature quickly rises to 1000~2500 °C, producing a high-quality sintered compact in a few mins [24]. | [25,26,27,28,29,30] |
Hot Pressing | Milling, forging and extrusion are performed at high temperature and pressure. It is a uniaxial-pressure, low-strain-rate powder metallurgy process to form powders at a temperature enough to induce sintering and creep processes by the simultaneous application of heat and pressure [31]. | [32,33,34] |
Hot Isostatic Pressing | Material is compressed by simultaneously applying high temperature (several hundreds to 2000 °C) and isostatic pressure (several tens to 200 MPa) using gas pressure. A commonly used pressure medium is Argon. Produced material shapes similar to the initial one after pressure [34,35]. | [36,37,38] |
Cold Pressing and Fusion | This is an unusually low-temperature process utilizing a transient transport phase and it applies uniaxial force to assist in densification of a powder compact. Many ceramic powders can be transformed to high-density monoliths at temperatures below the melting point [39]. | [40,41,42] |
Process | Operation Time (hrs.) | Condition of Radio Frequency | ||||
---|---|---|---|---|---|---|
Power (kW) | Freq. (kHz) | Ea * (kV) | Ia ** (A) | Ig *** (A) | ||
Melting | 1 | 20 | 840→850 | 6→12 | 3.5→6 | 0.3→0.5 |
Soaking | 3 | 50 | 850 | 10 | 6 | 0.45 |
Growing | 20 | 50 | 850→890 | 10→9 | 6→7.5 | 0.35 |
Cooling | 24 | - | - | - | - | - |
Type | Ave. ± SD * |
---|---|
TAF_Before test | 1.59 ± 0.37 nm |
TAF_After test | 1.54 ± 0.06 μm |
CZ_Before test | 1.44 ± 0.26 nm |
CZ_After test | 2.40 ± 0.90 nm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-K.; Chung, S.Y.; Shin, E.C.; Kim, J.B.; Lee, J.-K. Characterization of Cubic Zirconia as a Lens Material Suitable for Autonomous Driving. Photonics 2022, 9, 701. https://doi.org/10.3390/photonics9100701
Lee J-K, Chung SY, Shin EC, Kim JB, Lee J-K. Characterization of Cubic Zirconia as a Lens Material Suitable for Autonomous Driving. Photonics. 2022; 9(10):701. https://doi.org/10.3390/photonics9100701
Chicago/Turabian StyleLee, Jae-Kun, Sung Yun Chung, Eui Chul Shin, Jae Bum Kim, and Jong-Kwon Lee. 2022. "Characterization of Cubic Zirconia as a Lens Material Suitable for Autonomous Driving" Photonics 9, no. 10: 701. https://doi.org/10.3390/photonics9100701
APA StyleLee, J. -K., Chung, S. Y., Shin, E. C., Kim, J. B., & Lee, J. -K. (2022). Characterization of Cubic Zirconia as a Lens Material Suitable for Autonomous Driving. Photonics, 9(10), 701. https://doi.org/10.3390/photonics9100701