Compact Gas Sensor Using Silicon-on-Insulator Loop-Terminated Mach–Zehnder Interferometer
Abstract
:1. Introduction
2. Sensor Design
2.1. LT-MZI Structure and Analysis
2.2. Components Design
3. LT-MZI Sensor Simulation Results
4. Passive LT-MZI Structure Experimental Characterization
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hodgkinson, J.; Tatam, R.P. Optical gas sensing: A review. Meas. Sci. Technol. 2012, 24, 012004. [Google Scholar] [CrossRef] [Green Version]
- Yebo, N.A.; Lommens, P.; Hens, Z.; Baets, R. An integrated optic ethanol vapor sensor based on a silicon-on-insulator microring resonator coated with a porous ZnO film. Opt. Express 2010, 18, 11859–11866. [Google Scholar] [CrossRef] [Green Version]
- Dullo, F.T.; Lindecrantz, S.; Jágerská, J.; Hansen, J.H.; Engqvist, S.O.M.; Solbø, S.; Hellesø, O.G. Sensitive on-chip methane detection with a cryptophane-A cladded Mach-Zehnder interferometer. Opt. Express 2015, 23, 31564–31573. [Google Scholar] [CrossRef]
- Mi, G.; Horvath, C.; Van Silicon, V. Photonic dual-gas sensor for H2 and CO2 detection. Opt. Express 2017, 25, 16250. [Google Scholar] [CrossRef] [PubMed]
- Gervais, A.; Jean, P.; Shi, W.; LaRochelle, S. Design of Slow-Light Subwavelength Grating Waveguides for Enhanced On-Chip Methane Sensing by Absorption Spectroscopy. IEEE J. Sel. Top. Quantum Electron. 2018, 25, 1–8. [Google Scholar] [CrossRef]
- Ghosh, S.; Dar, T.; Viphavakit, C.; Pan, C.; Kejalakshmy, N.; Rahman, B.M. Rahman, compact photonic SOI sensors. In Computational Photonic Sensors; Hameed, M., Obayya, S., Eds.; Springer: Cham, Switzerland, 2019; pp. 343–383. [Google Scholar]
- Tsybeskov, L.; Lockwood, D.J.; Ichikawa, M. Silicon photonics: CMOS going optical [scanning the issue]. Proc. IEEE 2009, 97, 1161–1165. [Google Scholar] [CrossRef]
- Bogaerts, W.; Selvaraja, S.K. Silicon-on-insulator (SOI) technology for photonic integrated circuits (PICs). In Silicon-On-Insulator (SOI) Technology; Woodhead Publishing: Sawston, UK, 2014; pp. 395–434. [Google Scholar] [CrossRef]
- Fan, X.; White, I.M.; Shopova, S.I.; Zhu, H.; Suter, J.; Sun, Y. Sensitive optical biosensors for unlabeled targets: A review. Anal. Chim. Acta 2008, 620, 8–26. [Google Scholar] [CrossRef]
- Parriaux, O.; Veldhuis, G. Normalized analysis for the sensitivity optimization of integrated optical evanescent-wave sensors. J. Light. Technol. 1998, 16, 573–582. [Google Scholar] [CrossRef] [Green Version]
- Veldhuis, G.J.; Parriaux, O.; Hoekstra, H.J.; Lambeck, P.V. Lambeck Sensitivity enhancement in evanescent optical wave-guide sensors. J. Lightwave Technol. 2000, 18, 677–682. [Google Scholar] [CrossRef] [Green Version]
- Densmore, A.; Post, E.; Xu, D.-X.; Waldron, P.; Janz, S.; Cheben, P.; Lapointe, J.; Delage, A.; Lamontagne, B.; Schmid, J.H. A Silicon-on-Insulator Photonic Wire Based Evanescent Field Sensor. IEEE Photon-Technol. Lett. 2006, 18, 2520–2522. [Google Scholar] [CrossRef]
- Dell’Olio, F.; Passaro, V.M.N. Optical sensing by optimized silicon slot waveguides. Opt. Express 2007, 15, 4977–4993. [Google Scholar] [CrossRef] [PubMed]
- Almeida, V.; Xu, Q.; Barrios, C.A.; Lipson, M. Guiding and confining light in void nanostructure. Opt. Lett. 2004, 29, 1209–1211. [Google Scholar] [CrossRef]
- Prieto, F.; Sepúlveda, B.; Calle, A.; Llobera, A.; Domínguez, C.; Abad, A.; Montoya, A.; Lechuga, L.M. Lechuga an integrated optical interferometric nanodevice based on silicon technology for biosensor applications. Nanotechnology 2003, 14, 907–912. [Google Scholar] [CrossRef]
- Tian, Z.; Yam, S.S.; Loock, H.P. Refractive index sensor based on an abrupt taper michelson interferometer in a single-mode fiber. Opt. Lett. 2008, 33, 1105–1107. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Yu, Y.-S.; Xue, Y.; Chen, C.; Chen, Q.-D.; Sun, H.-B. Single S-tapered fiber Mach–Zehnder interferometers. Opt. Lett. 2011, 36, 4482–4484. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Gan, Q.; Xin, Z.; Cheng, X.; Bartoli, F.J. Plasmonic Mach–Zehnder Interferometer for Ultrasensitive On-Chip Biosensing. ACS Nano 2011, 5, 9836–9844. [Google Scholar] [CrossRef]
- El Shamy, R.S.; Swillam, M.A.; Khalil, D.A. Mid infrared integrated MZI gas sensor using suspended silicon waveguide. J. Lightwave Technol. 2019, 37, 4394–4400. [Google Scholar] [CrossRef]
- Barrios, C.A.; Gylfason, K.B.; Sánchez, B.; Griol, A.; Sohlström, H.; Holgado, M.; Casquel, R. Slot-waveguide biochemical sensor. Opt. Lett. 2007, 32, 3080–3082. [Google Scholar] [CrossRef]
- Grist, S.M.; Schmidt, S.A.; Flueckiger, J.; Donzella, V.; Shi, W.; Fard, S.T.; Kirk, J.T.; Ratner, D.M.; Cheung, K.C.; Chrostowski, L. Silicon photonic micro-disk resonators for label-free biosensing. Opt. Express 2013, 21, 7994–8006. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.T.; Chen, L.; Lipson, M. On-chip gas detection in silicon optical microcavities. Opt. Express 2008, 16, 4296–4301. [Google Scholar] [CrossRef]
- Tsigaridas, G.N. A study on refractive index sensors based on optical micro-ring resonators. Photon-Sens. 2017, 7, 217–225. [Google Scholar] [CrossRef]
- Xie, Y.; Huang, Y.; Che, H.; Zhao, W.; Xu, W.; Li, X.; Li, J. Theoretical investigation of a plasmonic sensor based on a metal–insulator–metal waveguide with a side-coupled nanodisk resonator. J. Nanophotonics 2015, 9, 93099. [Google Scholar] [CrossRef]
- Xie, Y.Y.; Huang, Y.X.; Zhao, W.L.; Xu, W.H.; He, C. A novel plasmonic sensor based on metal–insulator–metal waveguide with side-coupled hexagonal cavity. IEEE Photonics J. 2015, 7, 1–12. [Google Scholar] [CrossRef]
- El Shamy, R.S.; Khalil, D.; Swillam, M.A. Mid infrared optical gas sensor using plasmonic Mach-Zehnder interferometer. Sci. Rep. 2020, 10, 1293. [Google Scholar] [CrossRef]
- Ayoub, A.B.; Ji, D.; Gan, Q.; Swillam, M.A. Silicon plasmonic integrated interferometer sensor for lab on chip applications. Opt. Commun. 2018, 427, 319–325. [Google Scholar] [CrossRef]
- Ayoub, A.B.; Swillam, M.A. Swillam. Silicon plasmonics on-chip mid-IR gas sensor. IEEE Photonics Technol. Lett. 2018, 30, 931–934. [Google Scholar] [CrossRef]
- Zaki, A.O.; Kirah, K.; Swillam, M.A. Integrated optical sensor using hybrid plasmonics for lab on chip applications. J. Opt. 2016, 18, 085803. [Google Scholar] [CrossRef]
- Kanan, S.M.; El-Kadri, O.M.; Abu-Yousef, I.A.; Kanan, M.C. Semiconducting Metal Oxide Based Sensors for Selective Gas Pollutant Detection. Sensors 2009, 9, 8158–8196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimitrov, I.G.; Dikovska, A.O.; Atanasov, P.A.; Stoyanchov, T.R.; Vasilev, T. Al doped ZnO thin films for gas sensor application. J. Phys. Conf. Ser. 2008, 113, 012044. [Google Scholar] [CrossRef] [Green Version]
- Pineda-Reyes, A.M.; Herrera-Rivera, M.R.; Rojas-Chávez, H.; Cruz-Martínez, H.; Medina, D.I. Recent advances in ZnO-based carbon monoxide sensors: Role of doping. Sensors 2021, 21, 4425. [Google Scholar] [CrossRef]
- Allsop, T.; Kundrat, V.; Kalli, K.; Lee, G.B.; Neal, R.; Bond, P.; Shi, B.; Sullivan, J.; Culverhouse, P.; Webb, D.J. Methane detection scheme based upon the changing optical constants of a zinc oxide/platinum matrix created by a redox reaction and their effect upon surface plasmons. Sens. Actuators B Chem. 2018, 255, 843–853. [Google Scholar] [CrossRef]
- Gaur, R.; Padhy, H.M.; Elayaperumal, M. Surface plasmon assisted toxic chemical NO2 gas sensor by Au/ZnO functional thin films. J. Sens. Sens. Syst. 2021, 10, 163–169. [Google Scholar] [CrossRef]
- Amrehn, S.; Wu, X.; Wagner, T. Tungsten oxide photonic crystals as optical transducer for gas sensing. ACS Sens. 2018, 3, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Butt, M.A.; Degtyarev, S.A.; Khonina, S.N.; Kazanskiy, N.L. An evanescent field absorption gas sensor at mid-IR 3.39 μm wavelength. J. Mod. Opt. 2017, 64, 1892–1897. [Google Scholar] [CrossRef]
- Ranacher, C.; Consani, C.; Hedenig, U.; Grille, T.; Lavchiev, V.; Jakoby, B. A photonic silicon waveguide gas sensor using evanescent-wave absorption. In Proceedings of the 2016 IEEE Sensors, Orlando, FL, USA, 30 October–3 November 2016; pp. 1–3. [Google Scholar] [CrossRef]
- Koompai, N.; Limsuwan, P.; Le Roux, X.; Vivien, L.; Marris-Morini, D.; Chaisakul, P. Analysis of Si3N4 waveguides for on-chip gas sensing by optical absorption within the mid-infrared region between 2.7 and 3.4 µm. Results Phys. 2020, 16, 102957. [Google Scholar] [CrossRef]
- Gutierrez-Arroyo, A.; Baudet, E.; Bodiou, L.; Nazabal, V.; Rinnert, E.; Michel, K.; Bureau, B.; Colas, F.; Charrier, J. Theoretical study of an evanescent optical integrated sensor for multipurpose detection of gases and liquids in the Mid-Infrared. Sens. Actuators B Chem. 2017, 242, 842–848. [Google Scholar] [CrossRef]
- Elsayed, M.Y.; Ismail, Y.; Swillam, M.A. Semiconductor plasmonic gas sensor using on-chip infrared spectroscopy. Appl. Phys. A 2017, 123, 113. [Google Scholar] [CrossRef]
- Mortimore, D.B. Fiber loop reflectors. J. Light. Technol. 1988, 6, 1217–1224. [Google Scholar] [CrossRef]
- El-Rayany, M.M.; El Shamy, R.S.; Swillam, M.A. A compact silicon-on-insulator gas sensor. In Proceedings of the Silicon Photonics XIV, International Society for Optics and Photonics, San Francisco, CA, USA, 4–6 February 2019; Volume 10923. [Google Scholar]
- Han, C.; Ding, H.; Lv, F. Demonstration of a refractometric sensor based on an optical micro-fiber three-beam interferometer. Sci. Rep. 2014, 4, 7504. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.-J.; Yang, Y.; Peng, G.-D. Analysis of polarization-independent tunable optical comb filter by cascading MZI and phase modulating Sagnac loop. Opt. Commun. 2011, 284, 5144–5147. [Google Scholar] [CrossRef]
- Jiang, X.; Wu, J.; Yang, Y.; Pan, T.; Mao, J.; Liu, B.; Liu, R.; Zhang, Y.; Qiu, C. Wavelength and bandwidth-tunable silicon comb filter based on Sagnac loop mirrors with Mach-Zehnder interferometer couplers. Opt. Express 2016, 24, 2183–2188. [Google Scholar] [CrossRef] [Green Version]
- Patel, D.; Veerasubramanian, V.; Ghosh, S.; Samani, A.; Zhong, Q.; Plant, D.V. High-speed compact silicon photonic Michelson interferometric modulator. Opt. Express 2014, 22, 26788–26802. [Google Scholar] [CrossRef]
- Optical Waveguide Design Software-Lumerical MODE Solutions Lumerical. Available online: https://www.lumerical.com/products/mode-solutions/ (accessed on 20 December 2021).
- Nanophotonic FDTD Simulation Software-Lumerical FDTD Lumerical. Available online: https://www.lumerical.com/products/fdtd/ (accessed on 20 December 2021).
- Yoshie, T.; Tang, L.; Su, S.Y. Optical microcavity: Sensing down to single molecules and atoms. Sensors 2011, 11, 1972–1991. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, N.; Tang, Y.; Wosinski, L.; Dai, D.; He, S. Ultracompact low-loss coupler between strip and slot wave guides. Opt. Lett. 2009, 34, 1498–1500. [Google Scholar] [CrossRef] [Green Version]
- Palmer, R.; Alloatti, L.; Korn, D.; Heni, W.; Schindler, P.C.; Bolten, J.; Karl, M.; Waldow, M.; Wahlbrink, T.; Freude, W.; et al. Low-Loss Silicon Strip-to-Slot Mode Converters. IEEE Photon-J. 2013, 5, 2200409. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.; Chen, S.; Song, J.; Kee, J.S.; Yu, M.; Lo, G.-Q. CMOS-Compatible Fabrication of Silicon-Based Sub-100-nm Slot Waveguide with Efficient Channel-Slot Coupler. IEEE Photon-Technol. Lett. 2011, 24, 10–12. [Google Scholar] [CrossRef]
- Deng, Q.; Yan, Q.; Liu, L.; Li, X.; Michel, J.; Zhou, Z. Robust polarization-insensitive strip-slot waveguide mode-converter based on symmetric multimode interference. Opt. Express 2016, 24, 7347–7355. [Google Scholar] [CrossRef] [PubMed]
- Vlasov, Y.; McNab, S.J. Losses in single-mode silicon-on-insulator strip waveguides and bends. Opt. Express 2004, 12, 1622–1631. [Google Scholar] [CrossRef] [PubMed]
- PIC Design and Simulation Software-Lumerical Interconnect Lumerical. Available online: https://www.lumerical.com/products/interconnect/ (accessed on 20 December 2021).
- Sang, B.H.; Jeon, T.I. Pressure-dependent refractive indices of gases by THz time-domain spectroscopy. Opt. Express 2016, 24, 29040–29047. [Google Scholar] [CrossRef] [PubMed]
- Equipment/Capabilities UW NNCI Washington Nanofabrication Facility Website. Available online: https://www.wnf.washington.edu/about/equipment/ (accessed on 20 December 2021).
- Microsystems and Nanotechnology (MiNa) Group-The University of British Columbia Website. Available online: https://mina.ubc.ca/ (accessed on 20 December 2021).
- Maple Leaf Photonics Website. Available online: http://mapleleafphotonics.com/ (accessed on 20 December 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Shamy, R.S.; Swillam, M.A.; ElRayany, M.M.; Sultan, A.; Li, X. Compact Gas Sensor Using Silicon-on-Insulator Loop-Terminated Mach–Zehnder Interferometer. Photonics 2022, 9, 8. https://doi.org/10.3390/photonics9010008
El Shamy RS, Swillam MA, ElRayany MM, Sultan A, Li X. Compact Gas Sensor Using Silicon-on-Insulator Loop-Terminated Mach–Zehnder Interferometer. Photonics. 2022; 9(1):8. https://doi.org/10.3390/photonics9010008
Chicago/Turabian StyleEl Shamy, Raghi S., Mohamed A. Swillam, Mohamed M. ElRayany, Alaa Sultan, and Xun Li. 2022. "Compact Gas Sensor Using Silicon-on-Insulator Loop-Terminated Mach–Zehnder Interferometer" Photonics 9, no. 1: 8. https://doi.org/10.3390/photonics9010008
APA StyleEl Shamy, R. S., Swillam, M. A., ElRayany, M. M., Sultan, A., & Li, X. (2022). Compact Gas Sensor Using Silicon-on-Insulator Loop-Terminated Mach–Zehnder Interferometer. Photonics, 9(1), 8. https://doi.org/10.3390/photonics9010008