Characteristics of Ultrasensitive Hexagonal-Cored Photonic Crystal Fiber for Hazardous Chemical Sensing
Abstract
1. Introduction
2. Design
3. Methodology
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Habib, A.; Anower, S.; Haque, I. Highly Sensitive Hollow Core Spiral Fiber for Chemical Spectroscopic Applications. Sens. Int. 2020, 1, 100011. [Google Scholar] [CrossRef]
- Abbott, D.; Zhang, X.C. Scanning the Issue: T-Ray Imaging, Sensing, and Retection. Proc. IEEE 2007, 95, 1509–1513. [Google Scholar] [CrossRef]
- Habib, M.A.; Reza, M.S.; Abdulrazak, L.F.; Anower, M.S. Extremely High Birefringent and Low Loss Microstructure Optical Waveguide: Design and Analysis. Opt. Commun. 2019, 446, 93–99. [Google Scholar] [CrossRef]
- Chang, Y.H.; Jhu, Y.Y.; Wu, C.J. Temperature Dependence of Defect Mode in a Defective Photonic Crystal. Opt. Commun. 2012, 285, 1501–1504. [Google Scholar] [CrossRef]
- Bock, W.J.; Jiahua, C.; Eftimov, T.; Urbanczyk, W. A Photonic Crystal Fiber Sensor for Pressure Measurements. Conf. Rec.-IEEE Instrum. Meas. Technol. Conf. 2005, 2, 1177–1181. [Google Scholar] [CrossRef]
- Chengkuo, L.; Thillaigovindan, J. Optical Nanomechanical Sensor Using a Silicon Photonic Crystal Cantilever Embedded with a Nanocavity Resonator. Appl. Opt. 2009, 48, 1797–1803. [Google Scholar] [CrossRef]
- Morshed, M.; Imran Hassan, M.; Roy, T.K.; Uddin, M.S.; Abdur Razzak, S.M. Microstructure Core Photonic Crystal Fiber for Gas Sensing Applications. Appl. Opt. 2015, 54, 8637. [Google Scholar] [CrossRef]
- Ademgil, H.; Haxha, S. PCF Based Sensor with High Sensitivity, High Birefringence and Low Confinement Losses for Liquid Analyte Sensing Applications. Sensors 2015, 15, 31833–31842. [Google Scholar] [CrossRef]
- Asaduzzaman, S.; Ahmed, K. Microarray-Core Based Circular Photonic Crystal Fiber for High Chemical Sensing Capacity with Low Confinement Loss. Opt. Appl. 2017, 47, 41–49. [Google Scholar] [CrossRef]
- Arif, M.F.H.; Hossain, M.M.; Islam, N.; Khaled, S.M. A Nonlinear Photonic Crystal Fiber for Liquid Sensing Application with High Birefringence and Low Confinement Loss. Sens. Bio-Sens. Res. 2019, 22, 100252. [Google Scholar] [CrossRef]
- Bin Murshed Leon, M.J.; Abedin, S.; Kabir, M.A. A Photonic Crystal Fiber for Liquid Sensing Application with High Sensitivity, Birefringence and Low Confinement Loss. Sens. Int. 2021, 2, 100061. [Google Scholar] [CrossRef]
- Leon, M.J.B.M.; Kabir, M.A. Design of a Liquid Sensing Photonic Crystal Fiber with High Sensitivity, Bireferingence & Low Confinement Loss. Sens. Bio-Sens. Res. 2020, 28, 100335. [Google Scholar] [CrossRef]
- Islam, S.; Kumar, B.; Ahmed, K. Liquid-Infiltrated Photonic Crystal Fiber for Sensing Purpose: Design and Analysis. Alexandria Eng. J. 2018, 57, 1459–1466. [Google Scholar] [CrossRef]
- Ahmed, K.; Morshed, M.; Asaduzzaman, S.; Arif, M.F.H. Optimization and Enhancement of Liquid Analyte Sensing Performance Based on Square-Cored Octagonal Photonic Crystal Fiber. Optik 2017, 131, 687–696. [Google Scholar] [CrossRef]
- Maidi, A.M.; Yakasai, I.; Abas, P.E.; Nauman, M.M.; Apong, R.A.; Kaijage, S.; Begum, F. Design and Simulation of Photonic Crystal Fiber for Liquid Sensing. Photonics 2021, 8, 16. [Google Scholar] [CrossRef]
- Eid, M.M.A.; Habib, M.A.; Anower, M.S.; Rashed, A.N.Z. Highly Sensitive Nonlinear Photonic Crystal Fiber Based Sensor for Chemical Sensing Applications. Microsyst. Technol. 2020, 27, 1007–1014. [Google Scholar] [CrossRef]
- Buczynski, R. Photonic Crystal Fibers. Acta Phys. Pol. Ser. A 2004, 106, 141–167. [Google Scholar] [CrossRef]
- Wang, P.; Farrell, G.; Semenova, Y.; Rajan, G. Influence of Fiber Manufacturing Tolerances on the Spectral Response of a Bend Loss Based All-Fiber Edge Filter. Appl. Opt. 2008, 47, 2921. [Google Scholar] [CrossRef]
- Amouzad Mahdiraji, G.; Chow, D.M.; Sandoghchi, S.R.; Amirkhan, F.; Dermosesian, E.; Yeo, K.S.; Kakaei, Z.; Ghomeishi, M.; Poh, S.Y.; Yu Gang, S.; et al. Challenges and Solutions in Fabrication of Silica-Based Photonic Crystal Fibers: An Experimental Study. Fiber Integr. Opt. 2014, 33, 85–104. [Google Scholar] [CrossRef]
- Lee, H.W.; Schmidt, M.A.; Uebel, P.; Tyagi, H.; Joly, N.Y.; Scharrer, M.; Russell, P.S.J. Optofluidic Refractive-Index Sensor in Step-Index Fiber with Parallel Hollow Micro-Channel. Opt. Express 2011, 19, 8200. [Google Scholar] [CrossRef] [PubMed]
- El Hamzaoui, H.; Ouerdane, Y.; Bigot, L.; Bouwmans, G.; Capoen, B.; Boukenter, A.; Girard, S.; Bouazaoui, M. Sol-Gel Derived Ionic Copper-Doped Microstructured Optical Fiber: A Potential Selective Ultraviolet Radiation Dosimeter. Opt. Express 2012, 20, 29751. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-C.; Kim, H.-K.; Paek, U.-C.; Lee, B.-H.; Eom, J.-B. The Fabrication of a Photonic Crystal Fiber and Measurement of Its Properties. J. Opt. Soc. Korea 2003, 7, 79–83. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, J.; Yang, P.; Dai, S.; Wang, X.; Zhang, W. Fabrication of Chalcogenide Glass Photonic Crystal Fibers with Mechanical Drilling. Opt. Fiber Technol. 2015, 26, 176–179. [Google Scholar] [CrossRef]
- Bertoncini, A.; Liberale, C. 3D Printed Waveguides Based on Photonic Crystal Fiber Designs for Complex Fiber-End Photonic Devices. Optica 2020, 7, 1487. [Google Scholar] [CrossRef]
- Kiang, K.M.; Frampton, K.; Monro, T.M.; Moore, R.; Tucknott, J.; Hewak, D.W.; Richardson, D.J.; Rutt, H.N. Extruded Singlemode Non-Silica Glass Holey Optical Fibres. Electron. Lett. 2002, 38, 546–547. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, Y.; Yariv, A. Fabrication of Functional Microstructured Optical Fibers through a Selective-Filling Technique. Appl. Phys. Lett. 2004, 85, 5182–5184. [Google Scholar] [CrossRef]
- Xiao, L.; Jin, W.; Demokan, M.S.; Ho, H.L.; Hoo, Y.L.; Zhao, C. Fabrication of Selective Injection Microstructured Optical Fibers with a Conventional Fusion Splicer. Opt. Express 2005, 13, 9014. [Google Scholar] [CrossRef]
- Cordeiro, C.M.B.; dos Santos, E.M.; Brito Cruz, C.H.; de Matos, C.J.; Ferreiira, D.S. Lateral Access to the Holes of Photonic Crystal Fibers–Selective Filling and Sensing Applications. Opt. Express 2006, 14, 8403. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, S.; Tan, X.; Jin, W. Selective-Fluid-Filling Technique of Microstructured Optical Fibers. J. Light. Technol. 2010, 28, 3193–3196. [Google Scholar] [CrossRef]
- Wang, F.; Yuan, W.; Hansen, O.; Bang, O. Selective Filling of Photonic Crystal Fibers Using Focused Ion Beam Milled Microchannels. Opt. Express 2011, 19, 17585. [Google Scholar] [CrossRef]
- Arif, M.F.H.; Asaduzzaman, S.; Ahmed, K.; Morshed, M. High Sensitive PCF Based Chemical Sensor for Ethanol Detection. In Proceedings of the 2016 5th International Conference on Informatics, Electronics and Vision (ICIEV), Dhaka, Bangladesh, 13–14 May 2016; pp. 6–9. [Google Scholar] [CrossRef]
- Malitson, I.H. Interspecimen Comparison of the Refractive Index of Fused Silica*,†. J. Opt. Soc. Am. 1965, 55, 1205. [Google Scholar] [CrossRef]
- Hale, G.M.; Querry, M.R. Bladder Cancers Respond to EGFR Inhibitors. Cancer Discov. 2014, 4, 980–981. [Google Scholar] [CrossRef][Green Version]
- Moutzouris, K.; Papamichael, M.; Betsis, S.C.; Stavrakas, I.; Hloupis, G.; Triantis, D. Refractive, Dispersive and Thermo-Optic Properties of Twelve Organic Solvents in the Visible and near-Infrared. Appl. Phys. B Lasers Opt. 2014, 116, 617–622. [Google Scholar] [CrossRef]
- Akowuah, E.K.; Gorman, T.; Ademgil, H.; Haxha, S.; Robinson, G.K.; Oliver, J.V. Numerical Analysis of a Photonic Crystal Fiber for Biosensing Applications. IEEE J. Quantum Electron. 2012, 48, 1403–1410. [Google Scholar] [CrossRef]
- Yakasai, I.K.; Abas, P.E.; Ali, S.; Begum, F. Modelling and Simulation of a Porous Core Photonic Crystal Fibre for Terahertz Wave Propagation. Opt. Quantum Electron. 2019, 51, 1–16. [Google Scholar] [CrossRef]
- Yakasai, I.; Abas, P.E.; Kaijage, S.F.; Caesarendra, W.; Begum, F. Proposal for a Quad-Elliptical Photonic Crystal Fiber for Terahertz Wave Guidance and Sensing Chemical Warfare Liquids. Photonics 2019, 6, 78. [Google Scholar] [CrossRef]
- Begum, F.; Abas, P.E. Near Infrared Supercontinuum Generation in Silica Based Photonic Crystal Fiber. Prog. Electromagn. Res. C 2019, 89, 149–159. [Google Scholar] [CrossRef]
- Begum, F.; Namihira, Y.; Kinjo, T.; Kaijage, S. Supercontinuum Generation in Photonic Crystal Fibres at 1.06, 1.31, and 1.55m Wavelengths. Electron. Lett. 2010, 46, 1518–1520. [Google Scholar] [CrossRef]
- Begum, F.; Namihira, Y.; Razzak, S.M.A.; Kaijage, S.F.; Hai, N.H.; Miyagi, K.; Higa, H.; Zou, N. Flattened Chromatic Dispersion in Square Photonic Crystal Fibers with Low Confinement Losses. Opt. Rev. 2009, 16, 54–58. [Google Scholar] [CrossRef]
Change in Global Parameters | Relative Sensitivity (%) | Confinement Loss (dB/m) | ||||
---|---|---|---|---|---|---|
Water | Ethanol | Benzene | Water | Ethanol | Benzene | |
+4% | 94.40 | 96.32 | 99.64 | 2.60 × 10−9 | 1.05 × 10−10 | 7.62 × 10−14 |
+2% | 94.44 | 96.32 | 99.63 | 4.37 × 10−9 | 1.78 × 10−10 | 1.28 × 10−13 |
+1% | 94.46 | 96.32 | 99.63 | 5.58 × 10−9 | 2.71 × 10−10 | 1.72 × 10−13 |
Optimum | 94.47 | 96.32 | 99.63 | 7.31 × 10−9 | 3.70 × 10−10 | 1.76 × 10−13 |
−1% | 94.49 | 96.31 | 99.63 | 9.54 × 10−9 | 4.62 × 10−10 | 4.82 × 10−13 |
−2% | 94.50 | 96.31 | 99.62 | 1.25 × 10−8 | 6.78 × 10−10 | 5.46 × 10−13 |
−4% | 94.51 | 96.30 | 99.62 | 2.16 × 10−8 | 1.25 × 10−9 | 6.71 × 10−13 |
No. of Rings | Structure | Relative Sensitivity (%) | Confinement Loss (dB/m) | ||
---|---|---|---|---|---|
Core | Cladding | ||||
Ref. [9] | 3 | 6 core holes | Circular holes in circle | 26.23 (E) | ~10−8 (E) |
Ref. [10] | 4 | 1 core hole | Circular holes in hexagon | 41.37 (W) | ~10−10 (W) |
Ref. [11] | 4 | 9 core holes | Circular holes in hexagon | 44.45 (W) | ~10−4 (W) |
Ref. [12] | 4 | 4 core holes | Circular holes in hexagon | 49.13 (W) | ~10−5 (W) |
Ref. [13] | 3 | 7 core holes | Circular holes in hexagon | 48.19 (W) 53.22 (E) 55.56 (B) | - |
Ref. [14] | 5 | 9 core holes | Circular holes in octagon | 52.07 (W) 56.75 (E) 58.86 (B) | ~10−13 (W) ~10−13 (E) ~10−13 (B) |
Ref. [15] | 3 | 3 core holes | Circular holes in hexagon | 62.60 (W) 65.34 (E) 74.50 (B) | ~10−7 (W) ~10−8 (E) ~10−11 (B) |
Ref. [16] | 5 | 1 core hole | Circular holes in hexagon | 90.14 (W) 93.85 (E) 98.11 (B) | ~10−10 (W) ~10−10 (E) ~10−10 (B) |
Proposed PCF | 2 | 1 core hole | Circular holes in hexagon | 94.47 (W) 96.32 (E) 99.63 (B) | ~10−10 (W) ~10−10 (E) ~10−10 (B) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maidi, A.M.; Shamsuddin, N.; Wong, W.-R.; Kaijage, S.; Begum, F. Characteristics of Ultrasensitive Hexagonal-Cored Photonic Crystal Fiber for Hazardous Chemical Sensing. Photonics 2022, 9, 38. https://doi.org/10.3390/photonics9010038
Maidi AM, Shamsuddin N, Wong W-R, Kaijage S, Begum F. Characteristics of Ultrasensitive Hexagonal-Cored Photonic Crystal Fiber for Hazardous Chemical Sensing. Photonics. 2022; 9(1):38. https://doi.org/10.3390/photonics9010038
Chicago/Turabian StyleMaidi, Abdul Mu’iz, Norazanita Shamsuddin, Wei-Ru Wong, Shubi Kaijage, and Feroza Begum. 2022. "Characteristics of Ultrasensitive Hexagonal-Cored Photonic Crystal Fiber for Hazardous Chemical Sensing" Photonics 9, no. 1: 38. https://doi.org/10.3390/photonics9010038
APA StyleMaidi, A. M., Shamsuddin, N., Wong, W.-R., Kaijage, S., & Begum, F. (2022). Characteristics of Ultrasensitive Hexagonal-Cored Photonic Crystal Fiber for Hazardous Chemical Sensing. Photonics, 9(1), 38. https://doi.org/10.3390/photonics9010038