Characteristics of Ultrasensitive Hexagonal-Cored Photonic Crystal Fiber for Hazardous Chemical Sensing
Abstract
:1. Introduction
2. Design
3. Methodology
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Habib, A.; Anower, S.; Haque, I. Highly Sensitive Hollow Core Spiral Fiber for Chemical Spectroscopic Applications. Sens. Int. 2020, 1, 100011. [Google Scholar] [CrossRef]
- Abbott, D.; Zhang, X.C. Scanning the Issue: T-Ray Imaging, Sensing, and Retection. Proc. IEEE 2007, 95, 1509–1513. [Google Scholar] [CrossRef]
- Habib, M.A.; Reza, M.S.; Abdulrazak, L.F.; Anower, M.S. Extremely High Birefringent and Low Loss Microstructure Optical Waveguide: Design and Analysis. Opt. Commun. 2019, 446, 93–99. [Google Scholar] [CrossRef]
- Chang, Y.H.; Jhu, Y.Y.; Wu, C.J. Temperature Dependence of Defect Mode in a Defective Photonic Crystal. Opt. Commun. 2012, 285, 1501–1504. [Google Scholar] [CrossRef]
- Bock, W.J.; Jiahua, C.; Eftimov, T.; Urbanczyk, W. A Photonic Crystal Fiber Sensor for Pressure Measurements. Conf. Rec.-IEEE Instrum. Meas. Technol. Conf. 2005, 2, 1177–1181. [Google Scholar] [CrossRef]
- Chengkuo, L.; Thillaigovindan, J. Optical Nanomechanical Sensor Using a Silicon Photonic Crystal Cantilever Embedded with a Nanocavity Resonator. Appl. Opt. 2009, 48, 1797–1803. [Google Scholar] [CrossRef] [Green Version]
- Morshed, M.; Imran Hassan, M.; Roy, T.K.; Uddin, M.S.; Abdur Razzak, S.M. Microstructure Core Photonic Crystal Fiber for Gas Sensing Applications. Appl. Opt. 2015, 54, 8637. [Google Scholar] [CrossRef]
- Ademgil, H.; Haxha, S. PCF Based Sensor with High Sensitivity, High Birefringence and Low Confinement Losses for Liquid Analyte Sensing Applications. Sensors 2015, 15, 31833–31842. [Google Scholar] [CrossRef] [Green Version]
- Asaduzzaman, S.; Ahmed, K. Microarray-Core Based Circular Photonic Crystal Fiber for High Chemical Sensing Capacity with Low Confinement Loss. Opt. Appl. 2017, 47, 41–49. [Google Scholar] [CrossRef]
- Arif, M.F.H.; Hossain, M.M.; Islam, N.; Khaled, S.M. A Nonlinear Photonic Crystal Fiber for Liquid Sensing Application with High Birefringence and Low Confinement Loss. Sens. Bio-Sens. Res. 2019, 22, 100252. [Google Scholar] [CrossRef]
- Bin Murshed Leon, M.J.; Abedin, S.; Kabir, M.A. A Photonic Crystal Fiber for Liquid Sensing Application with High Sensitivity, Birefringence and Low Confinement Loss. Sens. Int. 2021, 2, 100061. [Google Scholar] [CrossRef]
- Leon, M.J.B.M.; Kabir, M.A. Design of a Liquid Sensing Photonic Crystal Fiber with High Sensitivity, Bireferingence & Low Confinement Loss. Sens. Bio-Sens. Res. 2020, 28, 100335. [Google Scholar] [CrossRef]
- Islam, S.; Kumar, B.; Ahmed, K. Liquid-Infiltrated Photonic Crystal Fiber for Sensing Purpose: Design and Analysis. Alexandria Eng. J. 2018, 57, 1459–1466. [Google Scholar] [CrossRef]
- Ahmed, K.; Morshed, M.; Asaduzzaman, S.; Arif, M.F.H. Optimization and Enhancement of Liquid Analyte Sensing Performance Based on Square-Cored Octagonal Photonic Crystal Fiber. Optik 2017, 131, 687–696. [Google Scholar] [CrossRef]
- Maidi, A.M.; Yakasai, I.; Abas, P.E.; Nauman, M.M.; Apong, R.A.; Kaijage, S.; Begum, F. Design and Simulation of Photonic Crystal Fiber for Liquid Sensing. Photonics 2021, 8, 16. [Google Scholar] [CrossRef]
- Eid, M.M.A.; Habib, M.A.; Anower, M.S.; Rashed, A.N.Z. Highly Sensitive Nonlinear Photonic Crystal Fiber Based Sensor for Chemical Sensing Applications. Microsyst. Technol. 2020, 27, 1007–1014. [Google Scholar] [CrossRef]
- Buczynski, R. Photonic Crystal Fibers. Acta Phys. Pol. Ser. A 2004, 106, 141–167. [Google Scholar] [CrossRef]
- Wang, P.; Farrell, G.; Semenova, Y.; Rajan, G. Influence of Fiber Manufacturing Tolerances on the Spectral Response of a Bend Loss Based All-Fiber Edge Filter. Appl. Opt. 2008, 47, 2921. [Google Scholar] [CrossRef] [Green Version]
- Amouzad Mahdiraji, G.; Chow, D.M.; Sandoghchi, S.R.; Amirkhan, F.; Dermosesian, E.; Yeo, K.S.; Kakaei, Z.; Ghomeishi, M.; Poh, S.Y.; Yu Gang, S.; et al. Challenges and Solutions in Fabrication of Silica-Based Photonic Crystal Fibers: An Experimental Study. Fiber Integr. Opt. 2014, 33, 85–104. [Google Scholar] [CrossRef]
- Lee, H.W.; Schmidt, M.A.; Uebel, P.; Tyagi, H.; Joly, N.Y.; Scharrer, M.; Russell, P.S.J. Optofluidic Refractive-Index Sensor in Step-Index Fiber with Parallel Hollow Micro-Channel. Opt. Express 2011, 19, 8200. [Google Scholar] [CrossRef] [PubMed]
- El Hamzaoui, H.; Ouerdane, Y.; Bigot, L.; Bouwmans, G.; Capoen, B.; Boukenter, A.; Girard, S.; Bouazaoui, M. Sol-Gel Derived Ionic Copper-Doped Microstructured Optical Fiber: A Potential Selective Ultraviolet Radiation Dosimeter. Opt. Express 2012, 20, 29751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.-C.; Kim, H.-K.; Paek, U.-C.; Lee, B.-H.; Eom, J.-B. The Fabrication of a Photonic Crystal Fiber and Measurement of Its Properties. J. Opt. Soc. Korea 2003, 7, 79–83. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Zhang, J.; Yang, P.; Dai, S.; Wang, X.; Zhang, W. Fabrication of Chalcogenide Glass Photonic Crystal Fibers with Mechanical Drilling. Opt. Fiber Technol. 2015, 26, 176–179. [Google Scholar] [CrossRef]
- Bertoncini, A.; Liberale, C. 3D Printed Waveguides Based on Photonic Crystal Fiber Designs for Complex Fiber-End Photonic Devices. Optica 2020, 7, 1487. [Google Scholar] [CrossRef]
- Kiang, K.M.; Frampton, K.; Monro, T.M.; Moore, R.; Tucknott, J.; Hewak, D.W.; Richardson, D.J.; Rutt, H.N. Extruded Singlemode Non-Silica Glass Holey Optical Fibres. Electron. Lett. 2002, 38, 546–547. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Xu, Y.; Yariv, A. Fabrication of Functional Microstructured Optical Fibers through a Selective-Filling Technique. Appl. Phys. Lett. 2004, 85, 5182–5184. [Google Scholar] [CrossRef] [Green Version]
- Xiao, L.; Jin, W.; Demokan, M.S.; Ho, H.L.; Hoo, Y.L.; Zhao, C. Fabrication of Selective Injection Microstructured Optical Fibers with a Conventional Fusion Splicer. Opt. Express 2005, 13, 9014. [Google Scholar] [CrossRef]
- Cordeiro, C.M.B.; dos Santos, E.M.; Brito Cruz, C.H.; de Matos, C.J.; Ferreiira, D.S. Lateral Access to the Holes of Photonic Crystal Fibers–Selective Filling and Sensing Applications. Opt. Express 2006, 14, 8403. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, S.; Tan, X.; Jin, W. Selective-Fluid-Filling Technique of Microstructured Optical Fibers. J. Light. Technol. 2010, 28, 3193–3196. [Google Scholar] [CrossRef]
- Wang, F.; Yuan, W.; Hansen, O.; Bang, O. Selective Filling of Photonic Crystal Fibers Using Focused Ion Beam Milled Microchannels. Opt. Express 2011, 19, 17585. [Google Scholar] [CrossRef] [Green Version]
- Arif, M.F.H.; Asaduzzaman, S.; Ahmed, K.; Morshed, M. High Sensitive PCF Based Chemical Sensor for Ethanol Detection. In Proceedings of the 2016 5th International Conference on Informatics, Electronics and Vision (ICIEV), Dhaka, Bangladesh, 13–14 May 2016; pp. 6–9. [Google Scholar] [CrossRef]
- Malitson, I.H. Interspecimen Comparison of the Refractive Index of Fused Silica*,†. J. Opt. Soc. Am. 1965, 55, 1205. [Google Scholar] [CrossRef]
- Hale, G.M.; Querry, M.R. Bladder Cancers Respond to EGFR Inhibitors. Cancer Discov. 2014, 4, 980–981. [Google Scholar] [CrossRef] [Green Version]
- Moutzouris, K.; Papamichael, M.; Betsis, S.C.; Stavrakas, I.; Hloupis, G.; Triantis, D. Refractive, Dispersive and Thermo-Optic Properties of Twelve Organic Solvents in the Visible and near-Infrared. Appl. Phys. B Lasers Opt. 2014, 116, 617–622. [Google Scholar] [CrossRef]
- Akowuah, E.K.; Gorman, T.; Ademgil, H.; Haxha, S.; Robinson, G.K.; Oliver, J.V. Numerical Analysis of a Photonic Crystal Fiber for Biosensing Applications. IEEE J. Quantum Electron. 2012, 48, 1403–1410. [Google Scholar] [CrossRef]
- Yakasai, I.K.; Abas, P.E.; Ali, S.; Begum, F. Modelling and Simulation of a Porous Core Photonic Crystal Fibre for Terahertz Wave Propagation. Opt. Quantum Electron. 2019, 51, 1–16. [Google Scholar] [CrossRef]
- Yakasai, I.; Abas, P.E.; Kaijage, S.F.; Caesarendra, W.; Begum, F. Proposal for a Quad-Elliptical Photonic Crystal Fiber for Terahertz Wave Guidance and Sensing Chemical Warfare Liquids. Photonics 2019, 6, 78. [Google Scholar] [CrossRef] [Green Version]
- Begum, F.; Abas, P.E. Near Infrared Supercontinuum Generation in Silica Based Photonic Crystal Fiber. Prog. Electromagn. Res. C 2019, 89, 149–159. [Google Scholar] [CrossRef] [Green Version]
- Begum, F.; Namihira, Y.; Kinjo, T.; Kaijage, S. Supercontinuum Generation in Photonic Crystal Fibres at 1.06, 1.31, and 1.55m Wavelengths. Electron. Lett. 2010, 46, 1518–1520. [Google Scholar] [CrossRef]
- Begum, F.; Namihira, Y.; Razzak, S.M.A.; Kaijage, S.F.; Hai, N.H.; Miyagi, K.; Higa, H.; Zou, N. Flattened Chromatic Dispersion in Square Photonic Crystal Fibers with Low Confinement Losses. Opt. Rev. 2009, 16, 54–58. [Google Scholar] [CrossRef]
Change in Global Parameters | Relative Sensitivity (%) | Confinement Loss (dB/m) | ||||
---|---|---|---|---|---|---|
Water | Ethanol | Benzene | Water | Ethanol | Benzene | |
+4% | 94.40 | 96.32 | 99.64 | 2.60 × 10−9 | 1.05 × 10−10 | 7.62 × 10−14 |
+2% | 94.44 | 96.32 | 99.63 | 4.37 × 10−9 | 1.78 × 10−10 | 1.28 × 10−13 |
+1% | 94.46 | 96.32 | 99.63 | 5.58 × 10−9 | 2.71 × 10−10 | 1.72 × 10−13 |
Optimum | 94.47 | 96.32 | 99.63 | 7.31 × 10−9 | 3.70 × 10−10 | 1.76 × 10−13 |
−1% | 94.49 | 96.31 | 99.63 | 9.54 × 10−9 | 4.62 × 10−10 | 4.82 × 10−13 |
−2% | 94.50 | 96.31 | 99.62 | 1.25 × 10−8 | 6.78 × 10−10 | 5.46 × 10−13 |
−4% | 94.51 | 96.30 | 99.62 | 2.16 × 10−8 | 1.25 × 10−9 | 6.71 × 10−13 |
No. of Rings | Structure | Relative Sensitivity (%) | Confinement Loss (dB/m) | ||
---|---|---|---|---|---|
Core | Cladding | ||||
Ref. [9] | 3 | 6 core holes | Circular holes in circle | 26.23 (E) | ~10−8 (E) |
Ref. [10] | 4 | 1 core hole | Circular holes in hexagon | 41.37 (W) | ~10−10 (W) |
Ref. [11] | 4 | 9 core holes | Circular holes in hexagon | 44.45 (W) | ~10−4 (W) |
Ref. [12] | 4 | 4 core holes | Circular holes in hexagon | 49.13 (W) | ~10−5 (W) |
Ref. [13] | 3 | 7 core holes | Circular holes in hexagon | 48.19 (W) 53.22 (E) 55.56 (B) | - |
Ref. [14] | 5 | 9 core holes | Circular holes in octagon | 52.07 (W) 56.75 (E) 58.86 (B) | ~10−13 (W) ~10−13 (E) ~10−13 (B) |
Ref. [15] | 3 | 3 core holes | Circular holes in hexagon | 62.60 (W) 65.34 (E) 74.50 (B) | ~10−7 (W) ~10−8 (E) ~10−11 (B) |
Ref. [16] | 5 | 1 core hole | Circular holes in hexagon | 90.14 (W) 93.85 (E) 98.11 (B) | ~10−10 (W) ~10−10 (E) ~10−10 (B) |
Proposed PCF | 2 | 1 core hole | Circular holes in hexagon | 94.47 (W) 96.32 (E) 99.63 (B) | ~10−10 (W) ~10−10 (E) ~10−10 (B) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maidi, A.M.; Shamsuddin, N.; Wong, W.-R.; Kaijage, S.; Begum, F. Characteristics of Ultrasensitive Hexagonal-Cored Photonic Crystal Fiber for Hazardous Chemical Sensing. Photonics 2022, 9, 38. https://doi.org/10.3390/photonics9010038
Maidi AM, Shamsuddin N, Wong W-R, Kaijage S, Begum F. Characteristics of Ultrasensitive Hexagonal-Cored Photonic Crystal Fiber for Hazardous Chemical Sensing. Photonics. 2022; 9(1):38. https://doi.org/10.3390/photonics9010038
Chicago/Turabian StyleMaidi, Abdul Mu’iz, Norazanita Shamsuddin, Wei-Ru Wong, Shubi Kaijage, and Feroza Begum. 2022. "Characteristics of Ultrasensitive Hexagonal-Cored Photonic Crystal Fiber for Hazardous Chemical Sensing" Photonics 9, no. 1: 38. https://doi.org/10.3390/photonics9010038
APA StyleMaidi, A. M., Shamsuddin, N., Wong, W. -R., Kaijage, S., & Begum, F. (2022). Characteristics of Ultrasensitive Hexagonal-Cored Photonic Crystal Fiber for Hazardous Chemical Sensing. Photonics, 9(1), 38. https://doi.org/10.3390/photonics9010038