Patent Portfolio Analysis of the Synergy between Machine Learning and Photonics
Abstract
:1. Introduction
2. Literature Review
2.1. Current Developments in Machine Learning in Photonics
2.2. Patent Analysis
3. Research Design
3.1. Search Strategy and Data Source
3.2. Correspondence Analysis
4. Results
4.1. Patent Search Results
4.2. Patent Portfolio Positioning Analysis
4.3. Post analysis: Change in Number of Patents and Papers
5. Conclusions
5.1. Discussion and Implications
5.2. Limitations and Future Research Directions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
IPC Categories | Meaning |
---|---|
A61B | Diagnosis; surgery; identification |
G02B | Optical elements, systems, or apparatus |
G06F | Electric digital data processing |
G06K | Recognition of data; presentation of data; record carriers; handling record carriers |
G06T | Image data processing or generation, in general |
H01P | Waveguides; resonators, lines, or other devices of the waveguide type |
H01Q | Antennas, i.e., radio aerials |
H03M | Coding, decoding, or code conversion, in general |
H04B | Transmission |
H04L | Transmission of digital information, e.g., telegraphic communication |
H04N | Pictorial communication, e.g., television |
H04W | Wireless communication networks |
G06N | Computer systems based on specific computational models |
G06Q | Data processing systems or methods, specially adapted for administrative, commercial, financial, managerial, supervisory, or forecasting purposes; systems or methods specially adapted for administrative, commercial, financial, managerial, supervisory. or forecasting purposes, not otherwise provided for |
G06T | Image data processing or generation, in general |
G16H | Healthcare informatics, i.e., information and communication technology (ICT) specially adapted for the handling or processing of medical or healthcare data |
References
- Chugh, S.; Gulistan, A.; Ghosh, S.; Rahman, B.M.A. Machine learning approach for computing optical properties of a photonic crystal fiber. Opt. Express 2019, 27, 36414–36425. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Swain, A.; Unni, R.; Zheng, Y. Decoding optical data with machine learning. Laser Photonics Rev. 2021, 15, 2000422. [Google Scholar] [CrossRef]
- Palai, G.; Patra, T.K.; Behera, S. Realization of fluoride sensor using two dimensional photonic structures and machine learning model. Microsyst. Technol. 2021, 27, 2761–2772. [Google Scholar] [CrossRef]
- Bhavin, J.S.; Alexander, N.T.; de Lima, T.F.; Pernice, W.H.P.; Bhaskaran, H.; David, W.; Prucnal, P.R. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics 2021, 15, 102–114. [Google Scholar]
- He, J.; Lee, J.; Kandeepan, S.; Wang, K. Machine learning techniques in radio-over-fiber systems and networks. Photonics 2020, 7, 105. [Google Scholar] [CrossRef]
- Shen, Y.; Harris, N.C.; Skirlo, S.; Prabhu, M.; Baehr-Jones, T.; Hochberg, M.; Sun, X.; Zhao, S.; Larochelle, H.; Englund, D.; et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics 2017, 11, 441–446. [Google Scholar] [CrossRef]
- Awais, M.; Raza, M.; Ashraf, M.I.; Song, J. Experimental demonstration and performance enhancement of 5G NR multiband radio over fiber system using optimized digital predistortion. Appl. Sci. 2021, 11, 11624. [Google Scholar]
- Liu, S.; Mididoddi, C.K.; Zhou, H.; Li, B.; Xu, W.; Wang, C. Single-shot sub-nyquist RF signal reconstruction based on deep learning network. In Proceedings of the 2018 International Topical Meeting on Microwave Photonics (MWP), Toulouse, France, 22–25 October 2018; pp. 1–4. [Google Scholar]
- Hadi, M.U.; Awais, M.; Raza, M.; Khurshid, K.; Jung, H. Neural network DPD for aggrandizing SM-VCSEL-SSMF-based radio over fiber link performance. Photonics 2021, 8, 19. [Google Scholar] [CrossRef]
- Melnikov, A.A.; Nautrup, H.P.; Dunjko, V.; Tiersch, M.; Briegel, H.J.; Krenn, M.; Zeilinger, A. Active learning machine learns to create new quantum experiments. Proc. Natl. Acad. Sci. USA 2018, 115, 1221–1226. [Google Scholar] [CrossRef] [Green Version]
- Psaltis, D.; Sideris, A.; Yamamura, A.A. A multilayered neural network controller. IEEE Control Syst. Mag. 1988, 8, 17–21. [Google Scholar] [CrossRef]
- Hadi, M.U.; Murtaza, G. Enhancing distributed feedback-standard single mode fiber-radio over fiber links performance by neural network digital predistortion. Microw. Opt. Technol. Lett. 2021, 63, 1558–1565. [Google Scholar] [CrossRef]
- Liu, S.; Xu, M.; Wang, J.; Lu, F.; Zhang, W.; Tian, H.; Chang, G. A multilevel artificial neural network nonlinear equalizer for millimeter-wave mobile fronthaul systems. J. Lightwave Technol. 2017, 35, 4406–4417. [Google Scholar] [CrossRef]
- Boltasseva, A.; Shalaev, V.; Kudyshev, Z. Advancing photonics with machine learning. In Photonic and Phononic Properties of Engineered Nanostructures XI; SPIE: Bellingham, WA, USA, 2021; Volume 11694, p. 116940L. [Google Scholar]
- Hecht, J. Artificial intelligence: How photonic integration can boost artificial intelligence. Laser Focus World 2021, 57, 36–41. [Google Scholar]
- Musumeci, F.; Rottondi, C.; Nag, A.; Macaluso, I.; Zibar, D.; Ruffini, M.; Tornatore, M. An overview on application of machine learning techniques in optical networks. IEEE Commun. Surv. Tutor. 2019, 21, 1383–1408. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Narayana, V.K.; Miscuglio, M.; Kimerling, L.C.; El-Ghazawi, T.; Sorger, V.J. CLEAR: A holistic figure-of-merit for post- and predicting electronic and photonic-based compute-system evolution. Sci. Rep. 2020, 10, 6482. [Google Scholar] [CrossRef] [Green Version]
- Genty, G.; Salmela, L.; Dudley, J.M.; Brunner, D.; Kokhanovskiy, A.; Kobtsev, S.; Turitsyn, S.K. Machine learning and applications in ultrafast photonics. Nat. Photonics 2021, 15, 91–101. [Google Scholar] [CrossRef]
- Miscuglio, M.; Sorge, V.J. Photonic tensor cores for machine learning. Appl. Phys. Rev. 2020, 7, 031404. [Google Scholar] [CrossRef]
- Mata, J.; de Miguel, I.; Durán, R.J.; Merayo, N.; Singh, S.K.; Jukan, A.; Chamania, M. Artificial intelligence (AI) methods in optical networks: A comprehensive survey. Opt. Switch. Netw. 2018, 28, 43–57. [Google Scholar] [CrossRef]
- Editorial. Rise of the learning machines. Nat. Photonics 2021, 15, 65. [Google Scholar] [CrossRef]
- Kim, K.; Jung, S.; Hwang, J. Technology convergence capability and firm innovation in the manufacturing sector: An approach based on patent network analysis. R&D Manag. 2019, 49, 595–606. [Google Scholar]
- Matricano, D. The effect of R&D investments, highly skilled employees, and patents on the performance of Italian innovative startups. Technol. Anal. Strateg. Manag. 2020, 32, 1195–1208. [Google Scholar]
- Abbas, Z.; Yong, L.; Li, Y.; Wang, R. Patent-based trend analysis for advanced thermal energy storage technologies and their applications. Int. J. Energy Res. 2020, 44, 5093–5116. [Google Scholar] [CrossRef]
- Huang, J.Y. An analysis of the intellectual structure of the cloud patents of SaaS. Technol. Anal. Strateg. Manag. 2017, 29, 917–931. [Google Scholar] [CrossRef]
- Konski, A.F.; Spielthenner, D.J.F. Stem cell patents: A landscape analysis. Nat. Biotechnol. 2009, 27, 722–726. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, Y.; Xiong, Y.; Cavallucci, D. A new function-based patent knowledge retrieval tool for conceptual design of innovative products. Comput. Ind. 2020, 115, 103154. [Google Scholar] [CrossRef]
- Sung, H.Y.; Yeh, H.Y.; Lin, J.K.; Chen, S.H. A visualization tool of patent topic evolution using a growing cell structure neural network. Scientometrics 2017, 111, 1267–1285. [Google Scholar] [CrossRef]
- Trappey, A.J.C.; Trappey, C.V.; Lee, K.L.C. Tracing the evolution of biomedical 3D printing technology using ontology-based patent concept analysis. Technol. Anal. Strateg. Manag. 2017, 29, 339–352. [Google Scholar] [CrossRef]
- Bass, S.D.; Kurgan, L.A. Discovery of factors influencing patent value based on machine learning in patents in the field of nanotechnology. Scientometrics 2010, 82, 217–241. [Google Scholar] [CrossRef]
- Greenacre, M. (Ed.) Correspondence Analysis in Practice; Chapman & Hall/CRC: New York, NY, USA, 2007. [Google Scholar]
- van Dam, A.; Dekker, M.; Morales-Castilla, I.; Rodríguez, M.Á.; Wichmann, D.; Baudena, M. Correspondence analysis, spectral clustering and graph embedding: Applications to ecology and economic complexity. Sci. Rep. 2021, 11, 8926. [Google Scholar] [CrossRef] [PubMed]
- Hanna, S.; Rowley, J. The projected destination brand personalities of European capital cities and their positioning. J. Mark. Manag. 2019, 35, 1135–1158. [Google Scholar] [CrossRef]
- Nava-Doctor, J.E.; Sandoval-Ruiz, C.A.; Fernández-Crispín, A. Knowledge, attitudes, and practices regarding vector-borne diseases in central Mexico. J. Ethnobiol. Ethnomedicine 2021, 17, 45. [Google Scholar] [CrossRef] [PubMed]
- Páez-Avilés, C.; Juanola-Feliu, E.; Samitier, J. Cross-fertilization of key enabling technologies: An empirical study of nanotechnology-related projects based on innovation management strategies. J. Eng. Technol. Manag. 2018, 49, 22–45. [Google Scholar] [CrossRef]
- Wen, C.H.; Chen, W.Y. Using multiple correspondence cluster analysis to map the competitive position of airlines. J. Air Transp. Manag. 2011, 17, 302–304. [Google Scholar] [CrossRef]
Ranking | IPC Number | Quantity | Percentage |
---|---|---|---|
1 | G06T | 212 | 7.11% |
2 | G06F | 197 | 6.61% |
3 | G02B | 172 | 5.77% |
4 | A61B | 162 | 5.44% |
5 | G06K | 137 | 4.60% |
6 | H04L | 134 | 4.50% |
7 | H04N | 110 | 3.69% |
8 | G06N | 80 | 2.68% |
9 | G16H | 77 | 2.58% |
10 | G06Q | 68 | 2.28% |
Relevance to Machine Learning and Photonics | Assignee |
---|---|
Optical communication equipment | AT&T Intellectual Property (81, 9.87%), Samsung Electronics Co., Ltd. (Suwon, Korea) (13, 1.58%) |
Smart computing | Intel Corporation (56, 6.82%), Magic Leap (40, 4.87%), International Business Machines Corporation (35, 4.26%), Microsoft Technology Licensing (20, 2.44%) |
Medical applications | HeartFlow, Inc. (15, 1.83%), Align Technology Inc. (13, 1.58%) |
Academic institutions using machine learning and photonics | California Institute of Technology (15, 1.83%), Leland Stanford Junior University (13, 1.58%) |
Assignee | x | y |
---|---|---|
AT&T Intellectual Property | –0.877 | 1.770 |
Intel Corporation | –0.834 | –0.850 |
Magic Leap | 1.320 | –0.089 |
International Business Machines Corporation | –0.318 | –0.319 |
Microsoft Technology Licensing | –0.253 | 0.284 |
California Institute of Technology | 0.441 | 0.214 |
HeartFlow, Inc. | 1.027 | –0.001 |
Align Technology Inc. | 0.332 | 0.099 |
Samsung Electronics Co., Ltd. | 0.296 | 0.146 |
Leland Stanford Junior University | 0.898 | 0.776 |
Group | Main Group Member | Main Patent Application Field |
---|---|---|
I | International Business Machines Corporation, Intel Corporation, Microsoft Technology Licensing | G06F, H04L, G06N, G06Q, H03M |
II | AT&T Intellectual Property | H04B, H04W, H01Q, H01P |
III | Align Technology Inc., California Institute of Technology, HeartFlow, Inc., Magic Leap, Samsung Electronics Co., Ltd., Leland Stanford Junior University | G06T, G02B, A61B, G06K, G16H |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, S.-H. Patent Portfolio Analysis of the Synergy between Machine Learning and Photonics. Photonics 2022, 9, 33. https://doi.org/10.3390/photonics9010033
Chang S-H. Patent Portfolio Analysis of the Synergy between Machine Learning and Photonics. Photonics. 2022; 9(1):33. https://doi.org/10.3390/photonics9010033
Chicago/Turabian StyleChang, Shu-Hao. 2022. "Patent Portfolio Analysis of the Synergy between Machine Learning and Photonics" Photonics 9, no. 1: 33. https://doi.org/10.3390/photonics9010033
APA StyleChang, S. -H. (2022). Patent Portfolio Analysis of the Synergy between Machine Learning and Photonics. Photonics, 9(1), 33. https://doi.org/10.3390/photonics9010033