Machine Learning Applications for Short Reach Optical Communication
Abstract
:1. Introduction
- Review the state-of-the-art of short-reach optical communication systems and networks including inter-datacenter networks, intra-datacenter networks, optical access networks, mobile front-haul communications, and in-building and indoor optical wireless communications.
- Comprehensively review ML-based OPM and MFI related research in short-reach optical communications, including the comparison of the different ML techniques, how the OPM task is formulated and the ML technique is utilized, and our analysis of, advantages and limitations of these studies.
- Comprehensively review the recent progress on ML-based signal processing techniques in short-reach optical communications, including ML-based equalization techniques as well as other ML-based signal processors, such as auto encoder/decoder, digital pre-distortion and soft-demapping applications.
- Review the ML-based applications in in-building/indoor OWC systems, including the ML-based signal processing techniques, and the application of ML algorithms in indoor user positioning.
2. Machine Learning for OPM and MFI in Short Reach Optical Communications
2.1. Direct Detection System
2.2. Coherent Detection System
3. Machine Learning for Short-Reach Optical Communication System Signal Processing
3.1. Machine-Learning-Based Equalizer for Short-Reach Optical Communications
3.1.1. Feed Forward Neural Network Based Equalizer
3.1.2. Reservoir Computing Based Equalizer
3.2. Other Machine-Learning Based Signal Processing Applications for Short-Reach Communication Systems
3.2.1. Auto-Encoder
3.2.2. Digital Predistortion
3.2.3. Soft Demapping
4. Machine Learning Applications for Indoor Optical Wireless Communication and Positioning
4.1. Machine Learning Applications for Indoor Optical Wireless Communication System
4.1.1. Machine Learning Applications for Indoor Visible Light Communications
4.1.2. Machine Learning Applications for Indoor Near-Infrared Communication
4.1.3. Other Machine Learning Based Applications in Indoor OWC System
4.2. Machine Learning Applications for OWC Based Indoor Positioning
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AAH | Asynchronous Amplitude Histogram |
ACPR | Adjacent Channel Power Ratio |
AdaBoost | Adaptive Boosting |
ADAM | Adaptive Moment Estimation |
ADTP | Asynchronous Delayed Tap Sampling |
AI | Artificial Intelligence |
ALSTM | Attention-Augmented Long Short-Term Memory |
ANN | Artificial Neural Network |
AOA | Angle of Arrival |
AP | Access Point |
ASE | Amplified Spontaneous Emission |
BBU | Baseband Unit |
BICM | Bit Interleaved Code Modulation |
BiLSTM | Bidirectional Long Short-Term Memory |
BRI | Baud Rate Identification |
BRNN-SD | Bidirectional RNN based Soft Demapper |
BtB | Back to Back |
C-AE | Convolutional Autoencoder |
CD | Chromatic Dispersion |
CNN | Convolutional Neural Network |
Ch | Channel |
CV-QKD | Continuous-Variable Quantum Key Distribution |
DAC | Digital-to-Analogue Converter |
DBN | Deep Belief Network |
DCI | Data-center Inter Connection Link |
DCN | Data-center Network |
DFE | Decision-Feedback Linear Equalizer |
DIFF | Difference between Pairs of Signal Strength |
DNN | Deep Neural Network |
DNN-LMS | Deep Neural Network-Least Mean Square |
DPD | Digital Predistortion |
DSO | Digital Storage Oscilloscope |
DSP | Digital Signal Processing |
DT | Decision Tree |
DU | Digital Unit |
EDFA | Erbium-Doped Fiber Amplifier |
EEPN | Equalization Enhanced Phase Noise |
ELM | Extreme Learning Machine |
EON | Elastic Optical Network |
FC | Feature Classifier |
FC-NN | Fully Convolutional Neural Network |
FEC | Forward Error Correction |
FFE | Feed-Forward Equalizer |
FFNN | Feed-Forward Neural Network |
FFT | Fast Fourier Transform |
FIR | Finite Impulse Response |
FOV | Field of View |
FPGA | Field Programmable Gate Array |
FTTx | Fiber to the x, x = Home, Building, Curb or Node |
FWM | Four-Wave mixing |
HLF | Hyperbolic Location Fingerprint |
IM/DD | Intensity Modulation/Direct Detection |
IMU | Inertial Measurement Unit |
ISI | Inter-symbol Interference |
KNN | K-Nearest Neighbor |
LD | Laser Diode |
LDBP | Learned Digital Back Propagation |
LED-ID | LED Identity |
LOS | Line-of-Sight |
LP | Label Predictor |
LRPON | Long-Reach Passive Optical Network |
LSTM | Long Short-Term Memory |
MFI | Modulation Format Identification |
ML | Machine Learning |
MLP | Multi-Layer Perception |
MLSE | Maximum Likelihood Sequence Estimation |
MMF | Multi-Mode Fiber |
MSE | Mean Squared Error |
MT-DNN | Multi-Task Deep Neural Network |
MUX | Multiplexer |
MZM | Mach-Zehnder Modulator |
NGFI | Next-Generation Fronthaul Interface |
NLMS | Normalized Least-Mean-Square |
NLOS | Non-Line-of-Sight |
NRZ | Non-Return-to-Zero |
OCC | Optical Camera Communication |
OFDM | Orthogonal Frequency Division Multiplexing |
OLT | Optical Line Terminal |
ONU | Optical Network Unit |
OOK | On-Off Keying |
OPM | Optical Performance Monitoring |
OSA | Optical Spectrum Analyzer |
OSNR | Optical Signal to Noise Ratio |
OWC | Optical Wireless Communication |
PAF | Phased Array Fed |
PAM | Pulse Amplitude Modulation |
PD | Photo-detector |
PDM-QAM | Polarisation Division Multiplexed Quadrature Amplitude Modulation |
PDM | Polarisation Division Multiplexed |
PMD | Polarization-Mode Dispersion |
PON | Passive Optical Network |
PWM | Pulse Width Modulation |
QAM | Quadrature Amplitude Modulation |
QoS | Quality of Service |
QPSK | Quadrature Phase Shift Keying |
RAN | Radio Access Network |
RBF | Radial Basis Function |
RC | Reservoir Computing |
ReLU | Rectified Linear Unit |
RF | Random Forest |
RIN | Relative Intensity Noise |
RNN | Recurrent Neural Network |
RRU | Remote Radio Unit |
RSS | Received Signal Strength |
RZ | Return-to-Zero |
SBS | Stimulated Brillouin Scattering |
SDN | Software-Defined Networking |
SDNN | Soft DNN |
SMF | Single Mode Fiber |
SPM | Self-Phase Modulation |
SSB | Single Side Band |
SSMF | Standard Single Mode Fiber |
SVM | Support Vector Machine |
SWDM | Shortwave Wavelength Division Multiplexing |
SUI | Stanford University Interim |
TDM | Time Division Multiplexing |
TDM-PON | Time Division Multiplexing Passive Optical Network |
TDMA | Time Division Multiple Access |
TDOA | Time Difference of Arrival |
TF-FSN | Transmitter Fingerprinting |
TLFM | Two-layer Fusion Network |
TOA | Time of Arrival |
TWDM | Time and Wavelength Division Multiplexing |
TWDM-PON | Time and Wavelength Division Multiplexing Passive Optical Network |
UDWDM-PON | Ultra-Dense Wavelength Division Modulation Passive Optical Network |
UE | User Equipment |
VCSEL | Vertical-Cavity Surface-Emitting Laser |
VLC | Visible Light Communication |
WDM | Wavelength Division Multiplexing |
WDM-PON | Wavelength Division Multiplexing Passive Optical Network |
WT | Wavelet transform |
XPM | Cross-Phase Modulation |
References
- Chagnon, M. Optical Communications for Short Reach. J. Light. Technol. 2019, 37, 1779–1797. [Google Scholar] [CrossRef]
- Kani, J.I.; Terada, J.; Hatano, T.; Kim, S.Y.; Asaka, K.; Yamada, T. Future optical access network enabled by modularization and softwarization of access and transmission functions [Invited]. IEEE/OSA J. Opt. Commun. Netw. 2020, 12, D48–D56. [Google Scholar] [CrossRef]
- Pang, X.; Ozolins, O.; Lin, R.; Zhang, L.; Udalcovs, A.; Xue, L.; Schatz, R.; Westergren, U.; Xiao, S.; Hu, W.; et al. 200 Gbps/Lane IM/DD Technologies for Short Reach Optical Interconnects. J. Light. Technol. 2020, 38, 492–503. [Google Scholar] [CrossRef] [Green Version]
- Yoo, S.J.B. Energy Efficiency in the Future Internet: The Role of Optical Packet Switching and Optical-Label Switching. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 406–418. [Google Scholar] [CrossRef]
- Koltchanov, I.; Sokolov, E.; Navitskaya, R.; Uvarov, A.; Richter, A. Multimode-Based Short-Reach Optical Communication Systems: Versatile Design Framework; SPIE OPTO; SPIE: Bellingham, WA, USA, 2020; Volume 11308. [Google Scholar]
- Yoo, S.J.B.; Yin, Y.; Wen, K. Intra and inter datacenter networking: The role of optical packet switching and flexible bandwidth optical networking. In Proceedings of the 2012 16th International Conference on Optical Network Design and Modelling (ONDM), Colchester, UK, 17–20 April 2012; pp. 1–6. [Google Scholar] [CrossRef]
- Sun, Y.; Lingle, R.; Shubochkin, R.; McCurdy, A.H.; Balemarthy, K.; Braganza, D.; Kamino, J.; Gray, T.; Fan, W.; Wade, K.; et al. SWDM PAM4 Transmission Over Next Generation Wide-Band Multimode Optical Fiber. J. Light. Technol. 2017, 35, 690–697. [Google Scholar] [CrossRef]
- Mestre, M.A.; Jorge, F.; Mardoyan, H.; Estaran, J.; Blache, F.; Angelini, P.; Konczykowska, A.; Riet, M.; Nodjiadjim, V.; Dupuy, J.Y.; et al. 100-Gbaud PAM-4 Intensity-Modulation Direct-Detection Transceiver for Datacenter Interconnect. In Proceedings of the ECOC 2016 42nd European Conference on Optical Communication, Dusseldorf, Germany, 18–22 September 2016; pp. 1–3. [Google Scholar]
- Le, S.T.; Schuh, K.; Dischler, R.; Buchali, F.; Schmalen, L.; Buelow, H. Beyond 400 Gb/s Direct Detection Over 80 km for Data Center Interconnect Applications. J. Light. Technol. 2020, 38, 538–545. [Google Scholar] [CrossRef]
- Xu, L. Photonic Devices and Subsystems for Future WDM PON and Radio over Fiber Technologies. 2010. Available online: https://xueshu.baidu.com/usercenter/paper/show?paperid=1x190jh0033m08w0u42c00t0ua323937&site=xueshu_se (accessed on 11 November 2021).
- Gupta, A.; Goel, H.; Bohara, V.A.; Srivastava, A. Performance Evaluation of Integrated XG-PON and IEEE 802.11ac based EDCA Networks. In Proceedings of the 2020 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), New Delhi, India, 14–17 December 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, D.; Wu, X.; Nesset, D. Progress of ITU-T higher speed passive optical network (50G-PON) standardization. J. Opt. Commun. Netw. 2020, 12, D99–D108. [Google Scholar] [CrossRef]
- 40-Gigabit-Capable Passive Optical Networks 2 (NG PON2): Physical Media Dependent (PMD) Layer Specification). ITU-T Recommendation G.989.2. 2019. Available online: https://www.itu.int/rec/T-REC-G.989.2/en (accessed on 11 November 2021).
- Bidkar, S.; Bonk, R.; Pfeiffer, T. Low-Latency TDM-PON for 5G Xhaul. In Proceedings of the 2020 22nd International Conference on Transparent Optical Networks (ICTON), Bari, Italy, 19–23 July 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Wong, E. Next-Generation Broadband Access Networks and Technologies. J. Light. Technol. 2012, 30, 597–608. [Google Scholar] [CrossRef]
- Vardakas, J.S.; Kartsakli, E.; Papaioannou, S.; Kalfas, G.; Pleros, N.; Antonopoulos, A.; Verikoukis, C. Quality of Service Provisioning in High-Capacity 5G Fronthaul/Backhaul Networks. In Interactive Mobile Communication Technologies and Learning; Auer, M.E., Tsiatsos, T., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 797–804. [Google Scholar]
- Zhang, Z.; Zhang, B.; Chen, Y.; Hua, B.; Chen, X. Channel-reuse IMDD-based 40 Gb/s/λ 16-QAM Nyquist-SCM downstream and 20 Gb/s/λ Nyquist 4 PAM upstream WDM-PON. In Proceedings of the 2016 21st OptoElectronics and Communications Conference (OECC) Held Jointly with 2016 International Conference on Photonics in Switching (PS), Niigata, Japan, 3–7 July 2016; pp. 1–3. [Google Scholar]
- Dutta, S.; Roy, D.; Das, G. Protocol Design for Energy Efficient OLT in TWDM-EPON Supporting Diverse Delay Bounds. IEEE Trans. Green Commun. Netw. 2021, 5, 1438–1450. [Google Scholar] [CrossRef]
- Dutta, S.; Roy, D.; Das, G. SLA-aware protocol design for energy-efficient OLT transmitter in TWDM-EPON. IEEE Trans. Green Commun. Netw. 2021, 5, 1961–1973. [Google Scholar] [CrossRef]
- Chanclou, P.; Neto, L.A.; Grzybowski, K.; Tayq, Z.; Saliou, F.; Genay, N. Mobile Fronthaul Architecture and Technologies: A RAN Equipment Assessment [Invited]. J. Opt. Commun. Netw. 2018, 10, A1–A7. [Google Scholar] [CrossRef]
- Liu, X.; Effenberger, F. Evolution of mobile fronthaul towards 5G wireless and its impact on time-sensitive optical networking. In Proceedings of the 2017 Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, USA, 19–23 March 2017; pp. 1–2. [Google Scholar]
- Hisano, D.; Maruta, K.; Nakayama, Y. Low Cost C-RAN and Fronthaul Design with WDM-PON and Multi-hopping Wireless Link. In Proceedings of the 2020 IEEE 17th Annual Consumer Communications Networking Conference (CCNC), Las Vegas, NV, USA, 10–13 January 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Konstantinou, D.; Bressner, T.A.; Rommel, S.; Johannsen, U.; Johansson, M.N.; Ivashina, M.V.; Smolders, A.B.; Tafur Monroy, I. 5G RAN architecture based on analog radio-over-fiber fronthaul over UDWDM-PON and phased array fed reflector antennas. Opt. Commun. 2020, 454, 124464. [Google Scholar] [CrossRef]
- Wang, K.; Nirmalathas, A.; Lim, C.; Skafidas, E. High-Speed Optical Wireless Communication System for Indoor Applications. IEEE Photonics Technol. Lett. 2011, 23, 519–521. [Google Scholar] [CrossRef]
- Kavehrad, M. Sustainable energy-efficient wireless applications using light. IEEE Commun. Mag. 2010, 48, 66–73. [Google Scholar] [CrossRef]
- Manor, H.; Arnon, S. Performance of an optical wireless communication system as a function of wavelength. In Proceedings of the 22nd Convention on Electrical and Electronics Engineers in Israel, Tel-Aviv, Israel, 1 December 2002; pp. 287–289. [Google Scholar] [CrossRef]
- Wang, K.; Song, T.; Kandeepan, S.; Li, H.; Alameh, K. Indoor optical wireless communication system with continuous and simultaneous positioning. Opt. Express 2021, 29, 4582–4595. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Yu, H.Y.; Zhu, Y.J.; Sun, Y. On the Ergodic Channel Capacity for Indoor Visible Light Communication Systems. IEEE Access 2017, 5, 833–841. [Google Scholar] [CrossRef]
- Potortì, F.; Palumbo, F.; Crivello, A. Sensors and Sensing Technologies for Indoor Positioning and Indoor Navigation. Sensors 2020, 20, 5924. [Google Scholar] [CrossRef]
- Song, T.; Nirmalathas, A.; Lim, C.; Wong, E.; Lee, K.L.; Hong, Y.; Alameh, K.; Wang, K. Performance Analysis of Repetition-Coding and Space-Time-Block-Coding as Transmitter Diversity Schemes for Indoor Optical Wireless Communications. J. Light. Technol. 2019, 37, 5170–5177. [Google Scholar] [CrossRef]
- Jenila, C.; Jeyachitra, R. Green indoor optical wireless communication systems: Pathway towards pervasive deployment. Digit. Commun. Netw. 2021, 7, 410–444. [Google Scholar] [CrossRef]
- Mahmoodi, K.A.; Gholami, A.; Ghassemlooy, Z. Impact of Number of LEDs on an Optical Camera Communication Based Indoor Positioning System. In Proceedings of the 2020 3rd West Asian Symposium on Optical and Millimeter-Wave Wireless Communication (WASOWC), Tehran, Iran, 24–25 November 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Shahjalal, M.; Hasan, M.K.; Hossan, M.T.; Chowdhury, M.Z.; Jang, Y.M. Error Mitigation in Optical Camera Communication Based Indoor Positioning System. In Proceedings of the 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN), Prague, Czech Republic, 3–6 July 2018; pp. 100–103. [Google Scholar] [CrossRef]
- Lin, B.; Tang, X.; Li, Y.; Zhang, M.; Lin, C.; Ghassemlooy, Z.; Wei, Y.; Wu, Y.; Li, H. Experimental demonstration of optical camera communications based indoor visible light positioning system. In Proceedings of the 2017 16th International Conference on Optical Communications and Networks (ICOCN), Wuzhen, China, 7–10 August 2017; pp. 1–3. [Google Scholar] [CrossRef]
- Puntsri, K.; Kansaree, E.; Yindeemak, A.; Wongtrairat, W. Experimental Demonstration of Gbps OFDM with 13m long for OWC Systems. In Proceedings of the 2021 9th International Electrical Engineering Congress (iEECON), Pattaya, Thailand, 10–12 March 2021; pp. 241–244. [Google Scholar] [CrossRef]
- Sharma, R.; Sharma, A. IS OWC WDM System Performance Optimization at 40 Gbps Bit Rate with Improved Link Distance of 10000 km. In Proceedings of the 2018 International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 11–12 July 2018; pp. 795–799. [Google Scholar] [CrossRef]
- Saif, W.S.; Esmail, M.A.; Ragheb, A.M.; Alshawi, T.A.; Alshebeili, S.A. Machine Learning Techniques for Optical Performance Monitoring and Modulation Format Identification: A Survey. IEEE Commun. Surv. Tutor. 2020, 22, 2839–2882. [Google Scholar] [CrossRef]
- Rafique, D.; Velasco, L. Machine learning for network automation: Overview, architecture, and applications [Invited Tutorial]. IEEE/OSA J. Opt. Commun. Netw. 2018, 10, D126–D143. [Google Scholar] [CrossRef] [Green Version]
- Musumeci, F.; Rottondi, C.; Nag, A.; Macaluso, I.; Zibar, D.; Ruffini, M.; Tornatore, M. An Overview on Application of Machine Learning Techniques in Optical Networks. IEEE Commun. Surv. Tutor. 2019, 21, 1383–1408. [Google Scholar] [CrossRef] [Green Version]
- Mata, J.; de Miguel, I.; Durán, R.J.; Merayo, N.; Singh, S.K.; Jukan, A.; Chamania, M. Artificial intelligence (AI) methods in optical networks: A comprehensive survey. Opt. Switch. Netw. 2018, 28, 43–57. [Google Scholar] [CrossRef]
- Cheng, S.; Xiao, D.; Huang, A.; Aibin, M. Machine Learning for Regenerator Placement Based on the Features of the Optical Network. In Proceedings of the 2019 21st International Conference on Transparent Optical Networks (ICTON), Angers, France, 9–13 July 2019; pp. 1–3. [Google Scholar] [CrossRef]
- Khan, F.N.; Yu, Y.; Tan, M.C.; Al-Arashi, W.H.; Yu, C.; Lau, A.P.T.; Lu, C. Experimental demonstration of joint OSNR monitoring and modulation format identification using asynchronous single channel sampling. Opt. Express 2015, 23, 30337–30346. [Google Scholar] [CrossRef]
- Jiang, X. Chapter 15-Optical performance monitoring in optical long-haul transmission systems. In Optical Performance Monitoring; Elsevier Inc.: Amsterdam, The Netherlands, 2010; pp. 423–446. [Google Scholar]
- Ramaswami, R.; Sivarajan, K.; Sasaki, G. Optical Networks: A Practical Perspective, 3rd ed.; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2009. [Google Scholar]
- Karout, J.; Agrell, E.; Szczerba, K.; Karlsson, M. Designing Power-Efficient Modulation Formats for Noncoherent Optical Systems. In Proceedings of the 2011 IEEE Global Telecommunications Conference-GLOBECOM 2011, Houston, TX, USA, 5–9 December 2011; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Willner, A.; Pan, Z.; Yu, C. Optical performance monitoring. In Optical Fiber Telecommunications V1B; Elsevier Inc.: Amsterdam, The Netherlands, 2008; pp. 233–292. [Google Scholar]
- Zhong, K.; Zhou, X.; Huo, J.; Yu, C.; Lu, C.; Lau, A.P.T. Digital Signal Processing for Short-Reach Optical Communications: A Review of Current Technologies and Future Trends. J. Light. Technol. 2018, 36, 377–400. [Google Scholar] [CrossRef]
- Morawski, R.; Miekina, A. Monitoring of the OSNR in DWDM Systems Using a Low-resolution Spectrometric Transducer. In Proceedings of the 2005 IEEE Instrumentationand Measurement Technology Conference Proceedings, Ottawa, ON, Canada, 16–19 May 2005; Volume 3, pp. 2306–2309. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, M.; Zhang, Z.; Li, J.; Gao, H.; Zhang, F.; Chen, X. Machine Learning-Based Multifunctional Optical Spectrum Analysis Technique. IEEE Access 2019, 7, 19726–19737. [Google Scholar] [CrossRef]
- Skoog, R.A.; Banwell, T.C.; Gannett, J.W.; Habiby, S.F.; Pang, M.; Rauch, M.E.; Toliver, P. Automatic Identification of Impairments Using Support Vector Machine Pattern Classification on Eye Diagrams. IEEE Photonics Technol. Lett. 2006, 18, 2398–2400. [Google Scholar] [CrossRef]
- Hong, J.; Chen, L.; Zhu, J.; Zhou, W.; Li, B.; Fu, Y.; Wang, L. Modulation Format Identification and Transmission Quality Monitoring for Link Establishment in Optical Network Using Machine Learning Techniques. In Proceedings of the 2020 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC), Beijing, China, 24–27 October 2020; pp. 1–3. [Google Scholar]
- Khan, F.N.; Zhong, K.; Al-Arashi, W.H.; Yu, C.; Lu, C.; Lau, A.P.T. Modulation Format Identification in Coherent Receivers Using Deep Machine Learning. IEEE Photonics Technol. Lett. 2016, 28, 1886–1889. [Google Scholar] [CrossRef]
- Bütler, R.M.; Häger, C.; Pfister, H.D.; Liga, G.; Alvarado, A. Model-Based Machine Learning for Joint Digital Backpropagation and PMD Compensation. J. Light. Technol. 2021, 39, 949–959. [Google Scholar] [CrossRef]
- Deligiannidis, S.; Bogris, A.; Mesaritakis, C.; Kopsinis, Y. Compensation of Fiber Nonlinearities in Digital Coherent Systems Leveraging Long Short-Term Memory Neural Networks. J. Light. Technol. 2020, 38, 5991–5999. [Google Scholar] [CrossRef]
- Vela, A.P.; Ruiz, M.; Velasco, L. Examples of Machine Learning Algorithms for Optical Network Control and Management. In Proceedings of the 2018 20th International Conference on Transparent Optical Networks (ICTON), Bucharest, Romania, 1–5 July 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Martín, I.; Troia, S.; Hernández, J.A.; Rodríguez, A.; Musumeci, F.; Maier, G.; Alvizu, R.; González de Dios, Ó. Machine Learning-Based Routing and Wavelength Assignment in Software-Defined Optical Networks. IEEE Trans. Netw. Serv. Manag. 2019, 16, 871–883. [Google Scholar] [CrossRef]
- Ujjwal, Y.; Thangaraj, J. Review and analysis of elastic optical network and sliceable bandwidth variable transponder architecture. Opt. Eng. 2018, 57, 1–18. [Google Scholar] [CrossRef]
- Khan, F.N.; Lu, C.; Lau, A.P.T. Machine Learning Methods for Optical Communication Systems. In Proceedings of the Advanced Photonics 2017 (IPR, NOMA, Sensors, Networks, SPPCom, PS), Optical Society of America, New Orleans, LA, USA, 24–27 July 2017; p. SpW2F.3. [Google Scholar] [CrossRef]
- Li, J.; Wang, D.; Zhang, M. Low-Complexity Adaptive Chromatic Dispersion Estimation Scheme Using Machine Learning for Coherent Long-Reach Passive Optical Networks. IEEE Photonics J. 2019, 11, 1–11. [Google Scholar] [CrossRef]
- Guo, S.; Guo, P.; Yang, A.; Qiao, Y. Deep Neural Network Based Chromatic Dispersion Estimation With Ultra-Low Sampling Rate for Optical Fiber Communication Systems. IEEE Access 2019, 7, 84155–84162. [Google Scholar] [CrossRef]
- Kashi, A.S.; Zhuge, Q.; Cartledge, J.C.; Borowiec, A.; Charlton, D.; Laperle, C.; O’Sullivan, M. Fiber Nonlinear Noise-to-Signal Ratio Monitoring Using Artificial Neural Networks. In Proceedings of the 2017 European Conference on Optical Communication (ECOC), Gothenburg, Sweden, 17–21 September 2017; pp. 1–3. [Google Scholar] [CrossRef]
- Dong, Z.; Khan, F.N.; Sui, Q.; Zhong, K.; Lu, C.; Lau, A.P.T. Optical Performance Monitoring: A Review of Current and Future Technologies. J. Light. Technol. 2016, 34, 525–543. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Wei, J.; Huang, S. Deep neural network based OSNR and availability predictions for multicast light-trees in optical WDM networks. Opt. Express 2020, 28, 10648–10669. [Google Scholar] [CrossRef] [PubMed]
- Pointurier, Y. Machine learning techniques for quality of transmission estimation in optical networks. IEEE/OSA J. Opt. Commun. Netw. 2021, 13, B60–B71. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, M.; Li, Z.; Li, J.; Fu, M.; Cui, Y.; Chen, X. Modulation Format Recognition and OSNR Estimation Using CNN-Based Deep Learning. IEEE Photonics Technol. Lett. 2017, 29, 1667–1670. [Google Scholar] [CrossRef]
- Tanimura, T.; Hoshida, T.; Kato, T.; Watanabe, S.; Morikawa, H. Convolutional neural network-based optical performance monitoring for optical transport networks. IEEE/OSA J. Opt. Commun. Netw. 2019, 11, A52–A59. [Google Scholar] [CrossRef]
- Karanov, B.; Chagnon, M.; Thouin, F.; Eriksson, T.A.; Bülow, H.; Lavery, D.; Bayvel, P.; Schmalen, L. End-to-End Deep Learning of Optical Fiber Communications. J. Light. Technol. 2018, 36, 4843–4855. [Google Scholar] [CrossRef]
- Fan, X.; Xie, Y.; Ren, F.; Zhang, Y.; Huang, X.; Chen, W.; Zhangsun, T.; Wang, J. Joint Optical Performance Monitoring and Modulation Format/Bit-Rate Identification by CNN-Based Multi-Task Learning. IEEE Photonics J. 2018, 10, 1–12. [Google Scholar] [CrossRef]
- Wang, D.; Wang, M.; Zhang, M.; Zhang, Z.; Yang, H.; Li, J.; Li, J.; Chen, X. Cost-effective and data size-adaptive OPM at intermediated node using convolutional neural network-based image processor. Opt. Express 2019, 27, 9403–9419. [Google Scholar] [CrossRef]
- Lun, H.; Fu, M.; Liu, X.; Wu, Y.; Yi, L.; Hu, W.; Zhuge, Q. Soft Failure Identification for Long-haul Optical Communication Systems Based on One-dimensional Convolutional Neural Network. J. Light. Technol. 2020, 38, 2992–2999. [Google Scholar] [CrossRef]
- Carena, A.; Curri, V.; Bosco, G.; Poggiolini, P.; Forghieri, F. Modeling of the Impact of Nonlinear Propagation Effects in Uncompensated Optical Coherent Transmission Links. J. Light. Technol. 2012, 30, 1524–1539. [Google Scholar] [CrossRef]
- Huang, L.; Xue, L.; Zhuge, Q.; Hu, W.; Yi, L. Modulation format identification under stringent bandwidth limitation based on an artificial neural network. OSA Contin. 2021, 4, 96–104. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Y.; Xu, T. Advanced DSP for Coherent Optical Fiber Communication. Appl. Sci. 2019, 9, 4192. [Google Scholar] [CrossRef] [Green Version]
- Ranzini, S.M.; Da Ros, F.; Bülow, H.; Zibar, D. Tunable Optoelectronic Chromatic Dispersion Compensation Based on Machine Learning for Short-Reach Transmission. Appl. Sci. 2019, 9, 4332. [Google Scholar] [CrossRef] [Green Version]
- Jin, C.; Shevchenko, N.A.; Li, Z.; Popov, S.; Chen, Y.; Xu, T. Nonlinear Coherent Optical Systems in the Presence of Equalization Enhanced Phase Noise. J. Light. Technol. 2021, 39, 4646–4653. [Google Scholar] [CrossRef]
- Schädler, M.; Böcherer, G.; Pachnicke, S. Soft-Demapping for Short Reach Optical Communication: A Comparison of Deep Neural Networks and Volterra Series. J. Light. Technol. 2021, 39, 3095–3105. [Google Scholar] [CrossRef]
- Li, D.; Song, H.; Cheng, W.; Deng, L.; Cheng, M.; Fu, S.; Tang, M.; Liu, D. 180 Gb/s PAM8 Signal Transmission in Bandwidth-Limited IMDD System Enabled by Tap Coefficient Decision Directed Volterra Equalizer. IEEE Access 2020, 8, 19890–19899. [Google Scholar] [CrossRef]
- Kuschnerov, M.; Schaedler, M.; Bluemm, C.; Calabro, S. Advances in Deep Learning for Digital Signal Processing in Coherent Optical Modems. In Proceedings of the Optical Fiber Communication Conference (OFC) 2020, Optical Society of America, San Diego, CA, USA, 8–12 March 2020; p. M3E.2. [Google Scholar] [CrossRef]
- Hsu, C.W.; Liu, S.; Lu, F.; Chow, C.W.; Yeh, C.H.; Chang, G.K. Accurate Indoor Visible Light Positioning System utilizing Machine Learning Technique with Height Tolerance. In Proceedings of the 2018 Optical Fiber Communications Conference and Exposition (OFC), San Diego, CA, USA, 11–15 March 2018; pp. 1–3. [Google Scholar]
- Chen, Y.; Guan, W.; Li, J.; Song, H. Indoor Real-Time 3-D Visible Light Positioning System Using Fingerprinting and Extreme Learning Machine. IEEE Access 2020, 8, 13875–13886. [Google Scholar] [CrossRef]
- Xu, Z.; Sun, C.; Ji, T.; Manton, J.H.; Shieh, W. Computational complexity comparison of feedforward/radial basis function/recurrent neural network-based equalizer for a 50-Gb/s PAM4 direct-detection optical link. Opt. Express 2019, 27, 36953–36964. [Google Scholar] [CrossRef] [PubMed]
- Ros, F.D.; Ranzini, S.M.; Dischler, R.; Cem, A.; Aref, V.; Bülow, H.; Zibar, D. Machine-learning-based equalization for short-reach transmission: Neural networks and reservoir computing. In Metro and Data Center Optical Networks and Short-Reach Links IV; Srivastava, A.K., Glick, M., Akasaka, Y., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2021; Volume 11712, pp. 1–8. [Google Scholar] [CrossRef]
- Kilper, D.C.; Bach, R.; Blumenthal, D.J.; Einstein, D.; Landolsi, T.; Ostar, L.; Preiss, M.; Willner, A.E. Optical Performance Monitoring. J. Light. Technol. 2004, 22, 294. [Google Scholar] [CrossRef]
- Wu, X.; Jargon, J.A.; Skoog, R.A.; Paraschis, L.; Willner, A.E. Applications of Artificial Neural Networks in Optical Performance Monitoring. J. Light. Technol. 2009, 27, 3580–3589. [Google Scholar]
- Zhang, Y.; Ren, Y.; Wang, Z.; Liu, B.; Zhang, H.; Li, S.; Fang, Y.; Huang, H.; Bao, C.; Pan, Z.; et al. Joint OSNR, Skew, ROF Monitoring of Coherent Channel using Eye Diagram Measurement and Deep Learning. In Proceedings of the 2019 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 5–10 May 2019; pp. 1–2. [Google Scholar]
- Zhang, S.; Peng, Y.; Sui, Q.; Li, Z. Modulation format identification using sparse asynchronous amplitude histograms. In Proceedings of the Advanced Photonics 2015, Optical Society of America, Boston, MA, USA, 27 June–1 July 2015; p. SpM4E.3. [Google Scholar] [CrossRef]
- Dods, S.; Anderson, T. Optical performance monitoring technique using delay tap asynchronous waveform sampling. In Proceedings of the 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference, Anaheim, CA, USA, 5–10 March 2006; p. 3. [Google Scholar] [CrossRef]
- Klabjan, D.; Zhu, X. Neural Network Retraining for Model Serving. arXiv 2020, arXiv:2004.14203. [Google Scholar]
- Wang, C.; Fu, S.; Xiao, Z.; Tang, M.; Liu, D. Long Short-Term Memory Neural Network (LSTM-NN) Enabled Accurate Optical Signal-to-Noise Ratio (OSNR) Monitoring. J. Light. Technol. 2019, 37, 4140–4146. [Google Scholar] [CrossRef]
- Ben-Ezra, Y.; Mahlab, U.; Lembrikov, B.I.; Dolev, E. Application of Wavelet Networks for Identification of Transients in Optical Networks. In Proceedings of the 2006 International Conference on Transparent Optical Networks, Nottingham, UK, 18–22 June 2006; Volume 1, pp. 111–114. [Google Scholar]
- Bangari, V.; Marquez, B.A.; Miller, H.; Tait, A.N.; Nahmias, M.A.; de Lima, T.F.; Peng, H.; Prucnal, P.R.; Shastri, B.J. Digital Electronics and Analog Photonics for Convolutional Neural Networks (DEAP-CNNs). IEEE J. Sel. Top. Quantum Electron. 2020, 26, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Wang, Z.; Liu, X.; Zeng, N.; Liu, Y.; Alsaadi, F.E. A survey of deep neural network architectures and their applications. Neurocomputing 2017, 234, 11–26. [Google Scholar] [CrossRef]
- Zhuge, Q.; Zeng, X.; Lun, H.; Cai, M.; Liu, X.; Yi, L.; Hu, W. Application of Machine Learning in Fiber Nonlinearity Modeling and Monitoring for Elastic Optical Networks. J. Light. Technol. 2019, 37, 3055–3063. [Google Scholar] [CrossRef]
- Tanimura, T.; Hoshida, T.; Rasmussen, J.C.; Suzuki, M.; Morikawa, H. OSNR monitoring by deep neural networks trained with asynchronously sampled data. In Proceedings of the 2016 21st OptoElectronics and Communications Conference (OECC) Held Jointly with 2016 International Conference on Photonics in Switching (PS), Niigata, Japan, 3–7 July 2016; pp. 1–3. [Google Scholar]
- Cheng, Y.; Fu, S.; Tang, M.; Liu, D. Multi-task deep neural network (MT-DNN) enabled optical performance monitoring from directly detected PDM-QAM signals. Opt. Express 2019, 27, 19062–19074. [Google Scholar] [CrossRef]
- Cho, H.J.; Varughese, S.; Lippiatt, D.; Desalvo, R.; Tibuleac, S.; Ralph, S.E. Optical performance monitoring using digital coherent receivers and convolutional neural networks. Opt. Express 2020, 28, 32087–32104. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, A.; Guo, P.; He, P. OSNR and nonlinear noise power estimation for optical fiber communication systems using LSTM based deep learning technique. Opt. Express 2018, 26, 21346–21357. [Google Scholar] [CrossRef]
- Yi, L.; Liao, T.; Huang, L.; Xue, L.; Li, P.; Hu, W. Machine Learning for 100 Gb/s/λ Passive Optical Network. J. Light. Technol. 2019, 37, 1621–1630. [Google Scholar] [CrossRef]
- Thrane, J.; Wass, J.; Piels, M.; Diniz, J.C.M.; Jones, R.; Zibar, D. Machine Learning Techniques for Optical Performance Monitoring From Directly Detected PDM-QAM Signals. J. Light. Technol. 2017, 35, 868–875. [Google Scholar] [CrossRef] [Green Version]
- Zhuge, Q.; Hu, W. Application of Machine Learning in Elastic Optical Networks. In Proceedings of the 2018 European Conference on Optical Communication (ECOC), Rome, Italy, 23–27 September 2018; pp. 1–3. [Google Scholar] [CrossRef]
- Guesmi, L.; Ragheb, A.M.; Fathallah, H.; Menif, M. Experimental Demonstration of Simultaneous Modulation Format/Symbol Rate Identification and Optical Performance Monitoring for Coherent Optical Systems. J. Light. Technol. 2018, 36, 2230–2239. [Google Scholar] [CrossRef]
- Karanov, B.; Chagnon, M.; Aref, V.; Ferreira, F.; Lavery, D.; Bayvel, P.; Schmalen, L. Experimental Investigation of Deep Learning for Digital Signal Processing in Short Reach Optical Fiber Communications. In Proceedings of the 2020 IEEE Workshop on Signal Processing Systems (SiPS), Coimbra, Portugal, 20–22 October 2020. [Google Scholar]
- Gaiarin, S.; Pang, X.; Ozolins, O.; Jones, R.T.; Da Silva, E.P.; Schatz, R.; Westergren, U.; Popov, S.; Jacobsen, G.; Zibar, D. High Speed PAM-8 Optical Interconnects with Digital Equalization Based on Neural Network. In Proceedings of the 2016 Asia Communications and Photonics Conference (ACP), Wuhan, China, 2–5 November 2016; pp. 1–3. [Google Scholar]
- Ge, L.; Zhang, W.; Liang, C.; He, Z. Compressed Neural Network Equalization Based on Iterative Pruning Algorithm for 112-Gbps VCSEL-Enabled Optical Interconnects. J. Light. Technol. 2020, 38, 1323–1329. [Google Scholar] [CrossRef]
- Lavania, S.; Kumam, B.; Matey, P.S.; Annepu, V.; Bagadi, K. Adaptive channel equalization using recurrent neural network under SUI channel model. In Proceedings of the 2015 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), Coimbatore, India, 19–20 March 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Argyris, A.; Bueno, J.; Fischer, I. Photonic machine learning implementation for signal recover in optical communications. Sci. Rep. 2018, 8, 8487. [Google Scholar] [CrossRef] [PubMed]
- Chin, H.M.; Jain, N.; Zibar, D.; Andersen, U.L.; Gehring, T. Machine learning aided carrier recovery in continuous-variable quantum key distribution. npj Quantum Inf. 2021, 7. [Google Scholar] [CrossRef]
- Schaedler, M.; Kuschnerov, M.; Calabrò, S.; Pittalà, F.; Bluemm, C.; Pachnicke, S. AI-Based Digital Predistortion for IQ Mach-Zehnder Modulators. In Proceedings of the 2019 Asia Communications and Photonics Conference (ACP), Chengdu, China, 2–5 November 2019; pp. 1–3. [Google Scholar]
- Li, M.; Wang, D.; Cui, Q.; Zhang, Z.; Deng, L.; Zhang, M. End-to-end Learning for Optical Fiber Communication with Data-driven Channel Model. In Proceedings of the 2020 Opto-Electronics and Communications Conference (OECC), Taipei, Taiwan, 4–8 October 2020; pp. 1–3. [Google Scholar] [CrossRef]
- Schaedler, M.; Calabrò, S.; Pittalà, F.; Bluemm, C.; Kuschnerov, M.; Pachnicke, S. Neural Network-Based Soft-Demapping for Nonlinear Channels. In Proceedings of the 2020 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 8–12 March 2020; pp. 1–3. [Google Scholar]
- Ranzini, S.M.; Dischler, R.; Da Ros, F.; Bülow, H.; Zibar, D. Experimental Investigation of Optoelectronic Receiver With Reservoir Computing in Short Reach Optical Fiber Communications. J. Light. Technol. 2021, 39, 2460–2467. [Google Scholar] [CrossRef]
- Yu, Y.; Che, Y.; Bo, T.; Kim, D.; Kim, H. Reduced-state MLSE for an IM/DD system using PAM modulation. Opt. Express 2020, 28, 38505–38515. [Google Scholar] [CrossRef]
- Chandra Kumari Kalla, S.; Ann Rusch, L. Recurrent neural nets achieving MLSE performance in bandlimited optical channels. In Proceedings of the 2020 IEEE Photonics Conference (IPC), Vancouver, BC, Canada, 28 September–1 October 2020; pp. 1–2. [Google Scholar] [CrossRef]
- Katz, G.; Sadot, D. Radial Basis Function Network Equalizer for Optical Communication OOK System. J. Light. Technol. 2007, 25, 2631–2637. [Google Scholar] [CrossRef]
- Katumba, A.; Yin, X.; Dambre, J.; Bienstman, P. A Neuromorphic Silicon Photonics Nonlinear Equalizer For Optical Communications With Intensity Modulation and Direct Detection. J. Light. Technol. 2019, 37, 2232–2239. [Google Scholar] [CrossRef] [Green Version]
- Da Ros, F.; Ranzini, S.M.; Bülow, H.; Zibar, D. Reservoir-Computing Based Equalization With Optical Pre-Processing for Short-Reach Optical Transmission. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Lyu, Y.; Li, X.; Wang, T.; Dong, X. Reservoir Computing Based Equalization for Radio over Fiber System. In Proceedings of the 2021 23rd International Conference on Advanced Communication Technology (ICACT), PyeongChang, Korea, 7–10 February 2021; pp. 85–90. [Google Scholar] [CrossRef]
- Lukoševičius, M.; Jaeger, H. Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 2009, 3, 127–149. [Google Scholar] [CrossRef]
- Talreja, V.; Koike-Akino, T.; Wang, Y.; Millar, D.S.; Kojima, K.; Parsons, K. End-to-End Deep Learning for Phase Noise-Robust Multi-Dimensional Geometric Shaping. In Proceedings of the 2020 European Conference on Optical Communications (ECOC), Brussels, Belgium, 6–10 December 2020; pp. 1–3. [Google Scholar] [CrossRef]
- Karanov, B.; Chagnon, M.; Aref, V.; Lavery, D.; Bayvel, P.; Schmalen, L. Optical Fiber Communication Systems Based on End-to-End Deep Learning: (Invited Paper). In Proceedings of the 2020 IEEE Photonics Conference (IPC), Vancouver, BC, Canada, 28 September–1 October 2020; pp. 1–2. [Google Scholar] [CrossRef]
- Hadi, M.U.; Awais, M.; Raza, M.; Khurshid, K.; Jung, H. Neural Network DPD for Aggrandizing SM-VCSEL-SSMF-Based Radio over Fiber Link Performance. Photonics 2021, 8, 19. [Google Scholar] [CrossRef]
- Schädler, M.; Böcherer, G.; Pittalà, F.; Calabrò, S.; Stojanovic, N.; Bluemm, C.; Kuschnerov, M.; Pachnicke, S. Recurrent Neural Network Soft-Demapping for Nonlinear ISI in 800Gbit/s DWDM Coherent Optical Transmissions. J. Light. Technol. 2021, 39, 5278–5286. [Google Scholar] [CrossRef]
- Michael, L.; Gomez-Barquero, D. Bit-Interleaved Coded Modulation (BICM) for ATSC 3.0. IEEE Trans. Broadcast. 2016, 62, 181–188. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, M.Z.; Hossan, M.T.; Islam, A.; Jang, Y.M. A Comparative Survey of Optical Wireless Technologies: Architectures and Applications. IEEE Access 2018, 6, 9819–9840. [Google Scholar] [CrossRef]
- Cahyadi, W.A.; Chung, Y.H.; Ghassemlooy, Z.; Hassan, N.B. Optical Camera Communications: Principles, Modulations, Potential and Challenges. Electronics 2020, 9, 1339. [Google Scholar] [CrossRef]
- Takai, I.; Ito, S.; Yasutomi, K.; Kagawa, K.; Andoh, M.; Kawahito, S. LED and CMOS Image Sensor Based Optical Wireless Communication System for Automotive Applications. IEEE Photonics J. 2013, 5, 6801418. [Google Scholar] [CrossRef]
- Luo, P.; Zhang, M.; Ghassemlooy, Z.; Le Minh, H.; Tsai, H.M.; Tang, X.; Png, L.C.; Han, D. Experimental Demonstration of RGB LED-Based Optical Camera Communications. IEEE Photonics J. 2015, 7, 1–12. [Google Scholar] [CrossRef]
- Walter, I.; Khadr, M.H.; Elgala, H. Deep Learning Based Optical Camera Communications. In Proceedings of the OSA Advanced Photonics Congress (AP) 2019 (IPR, Networks, NOMA, SPPCom, PVLED), Optical Society of America, Burlingame, CA, USA, 29 July–1 August 2019; p. SpTh3E.2. [Google Scholar] [CrossRef]
- Lu, X.; Lu, C.; Yu, W.; Qiao, L.; Liang, S.; Lau, A.P.T.; Chi, N. Memory-controlled deep LSTM neural network post-equalizer used in high-speed PAM VLC system. Opt. Express 2019, 27, 7822–7833. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.S.; Liu, Y.; Chow, C.W.; Chang, Y.H.; Lin, D.C.; Song, S.H.; Hsu, K.L.; Yeh, C.H. Z-Score Averaging Neural Network and Background Content Removal for High Performance Rolling Shutter based Optical Camera Communication (OCC). In Proceedings of the 2021 Optical Fiber Communications Conference and Exhibition (OFC), San Francisco, CA, USA, 6–10 June 2021; pp. 1–3. [Google Scholar]
- Ismail, N.; Rahiman, M.H.F.; Taib, M.N.; Ali, N.A.M.; Jamil, M.; Tajuddin, S.N. Classification of the quality of agarwood oils from Malaysia using Z-score technique. In Proceedings of the 2013 IEEE 3rd International Conference on System Engineering and Technology, Shah Alam, Malaysia, 19–20 August 2013; pp. 78–82. [Google Scholar] [CrossRef]
- Liu, L.; Deng, R.; Chen, L.K. 47-kbit/s RGB-LED-based optical camera communication based on 2D-CNN and XOR-based data loss compensation. Opt. Express 2019, 27, 33840–33846. [Google Scholar] [CrossRef]
- Liu, L.; Deng, R.; Chen, L.K. Spatial and Time Dispersions Compensation With Double-Equalization for Optical Camera Communications. IEEE Photonics Technol. Lett. 2019, 31, 1753–1756. [Google Scholar] [CrossRef]
- He, J.; Lee, J.; Song, T.; Li, H.; Kandeepan, S.; Wang, K. Recurrent neural network (RNN) for delay-tolerant repetition-coded (RC) indoor optical wireless communication systems. Opt. Lett. 2019, 44, 3745–3748. [Google Scholar] [CrossRef]
- He, J.; Lee, J.; Song, T.; Li, H.; Kandeepan, S.; Wang, K. Delay-Tolerant Indoor Optical Wireless Communication Systems Based on Attention-Augmented Recurrent Neural Network. J. Light. Technol. 2020, 38, 4632–4640. [Google Scholar] [CrossRef]
- Lee, J.; Song, T.; He, J.; Kandeepan, S.; Wang, K. Recurrent neural network FPGA hardware accelerator for delay-tolerant indoor optical wireless communications. Opt. Express 2021, 29, 26165–26182. [Google Scholar] [CrossRef]
- Liu, W.; Li, X.; Huang, Z.; Wang, X. Transmitter Fingerprinting for VLC Systems via Deep Feature Separation Network. IEEE Photonics J. 2021, 13, 1–7. [Google Scholar] [CrossRef]
- Wu, X.; O’Brien, D.C. A Novel Machine Learning-Based Handover Scheme for Hybrid LiFi and WiFi Networks. In Proceedings of the 2020 IEEE Globecom Workshops (GC Wkshps), Taipei, Taiwan, 7–11 December 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Ma, S.; Dai, J.; Lu, S.; Li, H.; Zhang, H.; Du, C.; Li, S. Signal Demodulation With Machine Learning Methods for Physical Layer Visible Light Communications: Prototype Platform, Open Dataset, and Algorithms. IEEE Access 2019, 7, 30588–30598. [Google Scholar] [CrossRef]
- Pham, T.L.; Nguyen, H.; Nguyen, T.; Jang, Y.M. A Novel Neural Network-Based Method for Decoding and Detecting of the DS8-PSK Scheme in an OCC System. Appl. Sci. 2019, 9, 2242. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Zhao, M.; Qiao, L.; Chi, N. Non-linear Compensation of Multi-CAP VLC System Employing Pre-Distortion Base on Clustering of Machine Learning. In Proceedings of the 2018 Optical Fiber Communications Conference and Exposition (OFC), San Diego, CA, USA, 11–15 March 2018; pp. 1–3. [Google Scholar]
- Shi, D.; Zhang, X.; Vladimirescu, A.; Shi, L.; Huang, Y.; Liu, Y. A Device Identification Method Based on LED Fingerprint for Visible Light Communication System. In Proceedings of the 15th International Conference on Availability, Reliability and Security (ARES ’20), Dublin, Ireland, 25–28 August 2020; Association for Computing Machinery: New York, NY, USA, 2020. [Google Scholar] [CrossRef]
- Alotaibi, N.M.; Alwakeel, S.S. A Neural Network Based Handover Management Strategy for Heterogeneous Networks. In Proceedings of the 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA, 9–11 December 2015; pp. 1210–1214. [Google Scholar] [CrossRef]
- Ben Zineb, A.; Ayadi, M.; Tabbane, S. QoE-based vertical handover decision management for cognitive networks using ANN. In Proceedings of the 2017 Sixth International Conference on Communications and Networking (ComNet), Hammamet, Tunisia, 29 March–1 April 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Chavez-Burbano, P.; Guerra, V.; Rabadan, J.; Jurado-Verdu, C.; Perez-Jimenez, R. Novel Indoor Localization System Using Optical Camera Communication. In Proceedings of the 2018 11th International Symposium on Communication Systems, Networks Digital Signal Processing (CSNDSP), Budapest, Hungary, 18–20 July 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Drawil, N.M.; Amar, H.M.; Basir, O.A. GPS Localization Accuracy Classification: A Context-Based Approach. IEEE Trans. Intell. Transp. Syst. 2013, 14, 262–273. [Google Scholar] [CrossRef]
- Luo, J.; Fan, L.; Li, H. Indoor Positioning Systems Based on Visible Light Communication: State of the Art. IEEE Commun. Surv. Tutor. 2017, 19, 2871–2893. [Google Scholar] [CrossRef]
- IEEE Standard for Local and metropolitan area networks–Part 15.7: Short-Range Optical Wireless Communications-Redline. IEEE Std 802.15.7-2018 (Revision of IEEE Std 802.15.7-2011)-Redline. 2019, pp. 1–670. Available online: https://ieeexplore.ieee.org/document/8751172 (accessed on 11 November 2021).
- Taylor, M.T.; Hranilovic, S. Angular diversity approach to indoor positioning using visible light. In Proceedings of the 2013 IEEE Globecom Workshops (GC Wkshps), Atlanta, GA, USA, 9–13 December 2013; pp. 1093–1098. [Google Scholar] [CrossRef]
- Li, X.; Cao, Y.; Chen, C. Machine Learning Based High Accuracy Indoor Visible Light Location Algorithm. In Proceedings of the 2018 IEEE International Conference on Smart Internet of Things (SmartIoT), Xi’an, China, 17–19 August 2018; pp. 198–203. [Google Scholar] [CrossRef]
- He, J.; Hsu, C.W.; Zhou, Q.; Tang, M.; Fu, S.; Liu, D.; Deng, L.; Chang, G.K. Demonstration of High Precision 3D Indoor Positioning System Based on Two-Layer Ann Machine Learning Technique. In Proceedings of the 2019 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 3–7 March 2019; pp. 1–3. [Google Scholar]
- Lin, C.; Lin, B.; Tang, X.; Zhou, Z.; Zhang, H.; Chaudhary, S.; Ghassemlooy, Z. An Indoor Visible Light Positioning System Using Artificial Neural Network. In Proceedings of the 2018 Asia Communications and Photonics Conference (ACP), Hangzhou, China, 26–29 October 2018; pp. 1–3. [Google Scholar] [CrossRef]
- Arfaoui, M.A.; Soltani, M.D.; Tavakkolnia, I.; Ghrayeb, A.; Assi, C.M.; Safari, M.; Haas, H. Invoking Deep Learning for Joint Estimation of Indoor LiFi User Position and Orientation. IEEE J. Sel. Areas Commun. 2021, 39, 2890–2905. [Google Scholar] [CrossRef]
- Tran, H.Q.; Ha, C. Improved Visible Light-Based Indoor Positioning System Using Machine Learning Classification and Regression. Appl. Sci. 2019, 9, 1048. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Hu, F.; Elikplim, N.R.; Li, L. Indoor Localization Using Visible Light via Two-Layer Fusion Network. IEEE Access 2019, 7, 16421–16430. [Google Scholar] [CrossRef]
- Poulose, A.; Eyobu, O.S.; Han, D.S. An Indoor Position-Estimation Algorithm Using Smartphone IMU Sensor Data. IEEE Access 2019, 7, 11165–11177. [Google Scholar] [CrossRef]
- Yuan, T.; Xu, Y.; Wang, Y.; Han, P.; Chen, J. A Tilt Receiver Correction Method for Visible Light Positioning Using Machine Learning Method. IEEE Photonics J. 2018, 10, 1–12. [Google Scholar] [CrossRef]
- Xie, C.; Guan, W.; Wu, Y.; Fang, L.; Cai, Y. The LED-ID Detection and Recognition Method Based on Visible Light Positioning Using Proximity Method. IEEE Photonics J. 2018, 10, 1–16. [Google Scholar] [CrossRef]
System Info. | Features Type | ML Techniques | Output Results | Advantages | Limitations |
---|---|---|---|---|---|
Direct detect 2 km link 40 Gb/s DPSK Sim. [84] | -Eye diagram -Eye histogram | -ANN | -OSNR -CD -PMD | -Simultaneous identification of CD PMD | -Need clock recovery -Feature engineering dependency |
Coherent EON 10–100 km 35,70,90 GBd DP-QAM Sim. [93] | -Fiber nonlinear interference -Power spectral density | -ANN | -SNR -Phase noise | -ML-aided nonlinearity modeling -Power uncertainty tolerance | -Limited to few layers -High system complexity |
Coherent 16 GBd DP-QPSK 64 GSa/s DAC Sim. [94] | -DAC sampled data | -DNN | -OSNR | -Learn from raw data -Save domain expertise | -Limited measurement range -Only considered ASE noise |
Direct detect 20, 30 GBd PDM-QAM Exp. [95] | -AAH | -DNN | -MFI -BRI -OSNR | -Multitask handling -High MFI and BRI accuracy | -Feature engineering dependency |
Coherent 80 km 20 Gbps QPSK Exp. [49] | -Spectral data | -ANN -KNN -SVM -DT | -OSNR | -High accuracy -Multifuctional spectrum analysis | -ANN-low accuracy -KNN-long training time -DT-complex structure |
Coherent 14, 16 GBd DP-QAM Exp. [66] | -DAC sampled data | -CNN | -OSNR | -Without feature engineering | -High complexity |
Direct detect PAM-4, RZ-DPSK, OOK Exp. [65] | -Eye diagram | -CNN | -MFI -OSNR | -Can handle complex raw eye diagram | -Feature engineering dependency |
Coherent 32 GBaud QAM Exp. [96] | -Constellation images | -CNN | -OSNR -BER -MFI | -Multi-functional | -Feature engineering dependency |
Coherent 4, 16, 64 QAM 100 km Sim. [97] | -Frequency domain sampled data | -LSTM | -OSNR -Nonlinear noise power | -Nonlinearity-insensitive OSNR estimation | -Feature engineering dependency |
Applications | Features Type | ML Techniques | System Info. | Ref. |
---|---|---|---|---|
Nonlinear equalization | DSO sampled digital signal | FFNN (ANN) | 32 GBd, PAM-8, IM/DD, 4 km SSMF | [103] |
Linear and nonlinear equalization | DSO sampled digital signal | Compressed FFNN | 112 Gbps PAM-4 PAM-8 VCSEL, 100 m MMF | [104] |
Adaptive channel equalization | Training error sequence | RNN | SUI channels BPSK | [105] |
Nonlinearity equalization | Frequency domain signal after CD compensation | LSTM | 25 Gbaud, 16 QAM, 50 km | [54] |
Signal detection and classification | Time domain Analogue pattern | ELM & RC | 25 Gb/s NRZ-PAM, 56 Gb/s PAM-4, 17–55 km | [106] |
Carrier recovery based on nonlinear equalization | Phase & frequency noise | Bayesian inference | 50 MBaud CV-QKD system, 500 MSa/s sampling rate, 20 km SMF | [107] |
Digital predistortion | Frequency-domain sampled signal | ELM | 100 GSa/s sampling rate, 40 GHz bandwidth, 40 km SSMF | [108] |
Auto-encoder | Time domain signal | LSTM | PAM2 and PAM4 20–80 km | [109] |
Soft-demapping for nonlinear channels | Soft decision mapping relationship | DNN | 800 Gb/s BtB coherent system, DP-32QAM | [110] |
CD compensation | Frequency domain spectrum | DNN | 32 GBd QPSK 16 QAM, 12 km 25 km SSMF | [74] |
CD mitigation | Time domain digital signal | RC | 32 GBd, OOK, 80 km | [111] |
PMD compensation | Frequency domain sampled data | LDBP | 128 Gsa/s sampling, MIMO-FIR filter, 100 km SSMF | [53] |
Wavelengths | Applications | ML Algorithms | References |
---|---|---|---|
Visible light | Encoder/decoder | CNN, DBN, AdaBoost ANN | [128,139,140] |
Equalization | K-means, LSTM, MLP, CNN, DNN-LMS | [129,130,132,141] | |
Physics layer security | CNN, K-means | [137,142] | |
Heterogeneous handover | ANN | [138,143,144] | |
Near-infrared | Delay tolerance | LSTM-RNN, ALSTM-RNN | [134,135] |
FPGA-based hardware accelerator | RNN | [136] |
System Setup | ML Algorithm | Positioning Algorithm | Cell Size | Accuracy | Transmitter | Receiver |
---|---|---|---|---|---|---|
OOK Sim. [150] | MLP | TDOA | m | 1.662 cm 2D | 4 LEDs | PD |
OOK FDM 50 kbps Exp. [79] | MLP | RSS | m | 3.65 cm 2D | 3 LEDs | PD |
QPSK FDM 50 kbps Exp. [151] | MLP | RSS | m | <1 cm 3D | 3 LEDs | PD |
OOK 5 W LED Exp. [152] | MLP | Transfor-mation | m | 1.49 cm 3D | 4 LEDs | Camera |
OOK 10 MHz LED Sim. [153] | MLP CNN KNN | RSS based finger-printing | m | 21.4 cm 17.15 cm 29.5 cm 3D | multiple IR-LEDs | PD |
OOK CDMA 9 W LED Sim. [80] | ELM | RSS based finger-printing | m | 3.65 cm 3D | multiple LEDs | PD |
OOK TDM 2 Mbps 25 W 3 MHz LED Sim. [154] | SVM, RF, DT, KNN | RSS | m | 8.6–13 cm 2D | 4 LEDs | PD |
OOK Exp. [155] | TLFM | Fingerprints (RSS, DIFF, HLF) | m | 5 cm 3D | 4 LEDs | PD |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Wang, Y.; Kandeepan, S.; Wang, K. Machine Learning Applications for Short Reach Optical Communication. Photonics 2022, 9, 30. https://doi.org/10.3390/photonics9010030
Xie Y, Wang Y, Kandeepan S, Wang K. Machine Learning Applications for Short Reach Optical Communication. Photonics. 2022; 9(1):30. https://doi.org/10.3390/photonics9010030
Chicago/Turabian StyleXie, Yapeng, Yitong Wang, Sithamparanathan Kandeepan, and Ke Wang. 2022. "Machine Learning Applications for Short Reach Optical Communication" Photonics 9, no. 1: 30. https://doi.org/10.3390/photonics9010030
APA StyleXie, Y., Wang, Y., Kandeepan, S., & Wang, K. (2022). Machine Learning Applications for Short Reach Optical Communication. Photonics, 9(1), 30. https://doi.org/10.3390/photonics9010030