Competition between Entrainment Phenomenon and Chaos in a Quantum-Cascade Laser under Strong Optical Reinjection
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Optical Power Tuning with External Optical Feedback
3.2. Entrainment Phenomenon and Non-Linear Dynamics under Strong Reinjection
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
QCL | Quantum-cascade laser |
FP | Fabry–Perot |
LIDAR | Light detection and ranging |
HHL | High heat load |
NPBS | Non-polarizing beam splitter |
MCT | Mercury-cadmium-telluride |
CaF | Calcium fluoride |
LIV | Light-intensity-voltage |
S | Stable sine wave |
Sd | Sine wave with distortion |
E | Entrainment phenomenon |
CC | Coherence collapse |
Appendix A
References
- Faist, J. Quantum Cascade Lasers, 1st ed.; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Abramov, P.I.; Kuznetsov, E.V.; Skvortsov, L.A. Prospects of using quantum-cascade lasers in optoelectronic countermeasure systems. J. Opt. Technol. 2017, 84, 331–341. [Google Scholar] [CrossRef]
- Huang, Y.; Kang, J.U. Quantum cascade laser thermal therapy guided by FDOCT. Chin. Opt. Lett. 2013, 10, 1011701. [Google Scholar] [CrossRef] [Green Version]
- Didier, P.; Spitz, O.; Cerutti, L.; Diaz-Thomas, D.A.; Baranov, A.N.; Carras, M.; Grillot, F. Relative intensity noise and intrinsic properties of RF mounted interband cascade laser. Appl. Phys. Lett. 2021, 119, 171107. [Google Scholar] [CrossRef]
- Han, H.; Cheng, X.; Jia, Z.; Shore, K.A. Nonlinear dynamics of interband cascade laser subjected to optical feedback. Photonics 2021, 8, 366. [Google Scholar] [CrossRef]
- Chen, C.; Jia, Z.; Lv, Y.; Li, P.; Xu, B.; Wang, Y. Broadband laser chaos generation using a quantum cascade laser with optical feedback. Opt. Lett. 2021, 46, 5039–5042. [Google Scholar] [CrossRef]
- Önder, D.E.; Kalaee, A.A.S.; Winge, D.O.; Wacker, A. Chaotic behavior of quantum cascade lasers at ignition. Commun. Nonlinear Sci. Num. Simul. 2021, 103, 105952. [Google Scholar] [CrossRef]
- Qi, X.; Bertling, K.; Taimre, T.; Agnew, G.; Lim, Y.L.; Gillespie, T.; Robinson, A.; Brünig, M.; Demić, A.; Dean, P.; et al. Observation of optical feedback dynamics in single-mode terahertz quantum cascade lasers: Transient instabilities. Phys. Rev. A 2021, 103, 033504. [Google Scholar] [CrossRef]
- Vukovic, N.; Radovanovic, J.; Milanovic, V.; Boiko, D.L. Numerical study of Risken–Nummedal–Graham–Haken instability in mid-infrared Fabry–Pérot quantum cascade lasers. Opt. Quantum Electron. 2020, 52, 1–12. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, X.; Wang, C. Strong optical feedback stabilized quantum cascade laser. ACS Photonics 2020, 7, 1255–1261. [Google Scholar] [CrossRef]
- Ferré, S.; Jumpertz, L.; Carras, M.; Ferreira, R.; Grillot, F. Beam shaping in high-power broad-area quantum cascade lasers using optical feedback. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Spitz, O.; Wu, J.; Herdt, A.; Maisons, G.; Carras, M.; Elsäßer, W.; Wong, C.-W.; Grillot, F. Extreme events in quantum cascade lasers. Adv. Photonics 2020, 2, 066001. [Google Scholar] [CrossRef]
- Spitz, O.; Herdt, A.; Elsäßer, W.; Grillot, F. Stimulating polarization switching dynamics in mid-infrared quantum cascade lasers. J. Opt. Soc. Am. B 2021, 38, B35–B39. [Google Scholar] [CrossRef]
- Wang, X.-G.; Zhao, B.-B.; Deng, Y.; Kovanis, V.; Wang, C. Nonlinear dynamics of a quantum cascade laser with tilted optical feedback. Phys. Rev. A 2021, 103, 023528. [Google Scholar] [CrossRef]
- Spitz, O.; Herdt, A.; Wu, J.; Maisons, G.; Carras, M.; Wong, C.-W.; Elsäßer, W.; Grillot, F. Private communication with quantum cascade laser photonic chaos. Nat. Commun. 2021, 12, 1–8. [Google Scholar] [CrossRef]
- Chen, J.-D.; Ho, H.-L.; Tsay, H.-L.; Lee, Y.-L.; Yang, C.-A.; Wu, K.-W.; Sun, J.-L.; Tsai, D.-J.; Lin, F.-Y. 3D chaos lidar system with a pulsed master oscillator power amplifier scheme. Opt. Exp. 2021, 29, 27871–27881. [Google Scholar] [CrossRef]
- Spitz, O.; Wu, J.; Carras, M.; Wong, C.-W.; Grillot, F. Chaotic optical power dropouts driven by low frequency bias forcing in a mid-infrared quantum cascade laser. Sci. Rep. 2019, 9, 1–9. [Google Scholar]
- Sukow, D.W.; Gauthier, D.J. Entraining power-dropout events in an external-cavity semiconductor laser using weak modulation of the injection current. IEEE J. Quantum Electron. 2000, 36, 175–183. [Google Scholar] [CrossRef] [Green Version]
- Mendez, J.M.; Laje, R.; Giudici, M.; Aliaga, J.; Mindlin, G.B. Dynamics of periodically forced semiconductor laser with optical feedback. Phys. Rev. E 2001, 63, 066218. [Google Scholar] [CrossRef]
- Tiana-Alsina, J.; Quintero-Quiroz, C.; Panozzo, M.; Torrent, M.C.; Masoller, C. Experimental study of modulation waveforms for entraining the spikes emitted by a semiconductor laser with optical feedback. Opt. Exp. 2018, 26, 9298–9309. [Google Scholar] [CrossRef] [PubMed]
- Spitz, O.; Didier, P.; Durupt, L.; Díaz-Thomas, D.A.; Baranov, A.N.; Cerutti, L.; Grillot, F. Free-space communication with directly modulated mid-infrared quantum cascade devices. IEEE J. Sel. Top. Quantum Electron. 2021, 28, 1–9. [Google Scholar] [CrossRef]
- Jumpertz, L. Nonlinear Photonics in Mid-Infrared Quantum Cascade Lasers, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Zhao, B.-B.; Wang, X.-G.; Wang, C. Low-Frequency Oscillations in Quantum Cascade Lasers with Tilted Optical Feedback. IEEE J. Sel. Top. Quantum Electron. 2021, 28, 1–7. [Google Scholar] [CrossRef]
- Jiang, S.; Pan, Z.; Dagenais, M.; Morgan, R.A.; Kojima, K. Influence of external optical feedback on threshold and spectral characteristics of vertical-cavity surface-emitting lasers. IEEE Photonics Technol. Lett. 1994, 6, 34–36. [Google Scholar] [CrossRef]
- Huyet, G.; Balle, S.; Giudici, M.; Green, C.; Giacomelli, G.; Tredicce, J.R. Low frequency fluctuations and multimode operation of a semiconductor laser with optical feedback. Opt. Commun. 1998, 149, 341–347. [Google Scholar] [CrossRef]
- Spitz, O.; Wu, J.; Herdt, A.; Carras, M.; Elsäßer, W.; Wong, C.-W.; Grillot, F. Investigation of chaotic and spiking dynamics in mid-infrared quantum cascade lasers operating continuous-waves and under current modulation. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–11. [Google Scholar] [CrossRef]
- Jumpertz, L.; Schires, K.; Carras, M.; Sciamanna, M.; Grillot, F. Chaotic light at mid-infrared wavelength. Light Sci. Appl. 2016, 5, e16088. [Google Scholar] [CrossRef] [Green Version]
- Toomey, J.P.; Kane, D.M.; Lee, M.W.; Shore, K.A. Nonlinear dynamics of semiconductor lasers with feedback and modulation. Opt. Exp. 2010, 18, 16955–16972. [Google Scholar] [CrossRef]
- Jumpertz, L.; Carras, M.; Schires, K.; Grillot, F. Regimes of external optical feedback in 5.6 μm distributed feedback mid-infrared quantum cascade lasers. Appl. Phys. Lett. 2014, 105, 131112. [Google Scholar] [CrossRef] [Green Version]
- Takiguchi, Y.; Liu, Y.; Ohtsubo, J. Low-frequency fluctuation induced by injection-current modulation in semiconductor lasers with optical feedback. Opt. Lett. 1998, 23, 1369–1371. [Google Scholar] [CrossRef] [Green Version]
- Pang, X.; Ozolins, O.; Zhang, L.; Schatz, R.; Udalcovs, A.; Yu, X.; Jacobsen, G.; Popov, S.; Chen, J.; Lourdudoss, S. Free-Space Communications Enabled by Quantum Cascade Lasers. Physica Status Solidi 2021, 218, 2000407. [Google Scholar] [CrossRef]
- Dely, H.; Bonazzi, T.; Spitz, O.; Rodriguez, E.; Gacemi, D.; Todorov, Y.; Pantzas, K.; Beaudoin, G.; Sagnes, I.; Li, L.; et al. 10 Gbit s−1 Free Space Data Transmission at 9 μm Wavelength With Unipolar Quantum Optoelectronics. Laser & Photonics Reviews 2022, 16, 2100414. [Google Scholar]
- Bosco, L.; Franckié, M.; Scalari, G.; Beck, M.; Wacker, A.; Faist, J. Thermoelectrically cooled THz quantum cascade laser operating up to 210 K. Appl. Phys. Lett. 2019, 115, 010601. [Google Scholar] [CrossRef]
- Khalatpour, A.; Paulsen, A.K.; Deimert, C.; Wasilewski, Z.R.; Hu, Q. High-power portable terahertz laser systems. Nat. Photonics 2021, 15, 16–20. [Google Scholar] [CrossRef]
- Figueiredo, P.; Suttinger, M.; Go, R.; Tsvid, E.; Patel, C.K.N.; Lyakh, A. Progress in high-power continuous-wave quantum cascade lasers. Appl. Opt. 2017, 56, H15–H23. [Google Scholar] [CrossRef]
- Osmundsen, J.; Gade, N. Influence of optical feedback on laser frequency spectrum and threshold conditions. IEEE J. Quantum Electron. 1983, 19, 465–469. [Google Scholar] [CrossRef] [Green Version]
- Pérez, G.; Cerdeira, H.A. Extracting messages masked by chaos. Phys. Rev. Lett. 1995, 74, 1970. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spitz, O.; Durupt, L.; Grillot, F. Competition between Entrainment Phenomenon and Chaos in a Quantum-Cascade Laser under Strong Optical Reinjection. Photonics 2022, 9, 29. https://doi.org/10.3390/photonics9010029
Spitz O, Durupt L, Grillot F. Competition between Entrainment Phenomenon and Chaos in a Quantum-Cascade Laser under Strong Optical Reinjection. Photonics. 2022; 9(1):29. https://doi.org/10.3390/photonics9010029
Chicago/Turabian StyleSpitz, Olivier, Lauréline Durupt, and Frédéric Grillot. 2022. "Competition between Entrainment Phenomenon and Chaos in a Quantum-Cascade Laser under Strong Optical Reinjection" Photonics 9, no. 1: 29. https://doi.org/10.3390/photonics9010029
APA StyleSpitz, O., Durupt, L., & Grillot, F. (2022). Competition between Entrainment Phenomenon and Chaos in a Quantum-Cascade Laser under Strong Optical Reinjection. Photonics, 9(1), 29. https://doi.org/10.3390/photonics9010029