CO2 Gas Temperature Sensing near Room Temperature by a Quantum Cascade Laser in Inter Pulse Mode
Abstract
:1. Introduction
2. Selection of Lines
- High temperature sensitivity in a range close to room temperature;
- Sufficient line strength in order to allow for direct absorption spectroscopy and simple experimental setup/sensor design;
- Low interferences with absorption from other gases, in particular IR active gas components which are abundant in earth atmosphere, combustion processes, breath gas, or agricultural applications, such as H2O, CO, NO, N2O, and hydrocarbons;
- Transition frequencies lie within the tuning range of distributed feedback QC lasers (∼1–2 cm−1);
- A wide dynamic range of CO2 concentrations can be covered.
3. Experimental Details
4. Results and Discussion
4.1. General Considerations
4.2. Evaluation
4.2.1. Thermal Drift
4.2.2. Broadening
4.2.3. Fitting Routines
- Relative frequency calibration of the experimental data by applying a fourth-order polynomial interpolation to the interference fringes of the Ge etalon transmission spectrum. Absolute frequency calibration is included as a parameter in the fitting routine, where the initial guess value can be obtained from comparison of the absorption lines’ positions to the HITRAN database.
- Simulation of absorption spectra based on the HITRAN database with fitting parameters T (temperature), p (pressure), and c (CO2 concentration);
- Gaussian convolution of the simulated spectra with the broadening parameter from Section 4.2.2 in order to account for non-Lorentzian spectral broadening resulting from the inherent QC laser line width;
- Include a constant offset in the absorption spectrum in order to account for baseline variations in the experimental data.
4.3. Temperature-Dependent Measurements
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Faist, J.; Capasso, F.; Sivco, D.L.; Sirtori, C.; Hutchinson, A.L.; Cho, A.Y. Quantum Cascade Laser. Science 1994, 264, 553–556. [Google Scholar] [CrossRef] [PubMed]
- Curl, R.F.; Capasso, F.; Gmachl, C.; Kosterev, A.A.; McManus, B.; Lewicki, R.; Pusharsky, M.; Wysocki, G.; Tittel, F.K. Quantum cascade lasers in chemical physics. Chem. Phys. Lett. 2010, 487, 1–18. [Google Scholar] [CrossRef]
- Kosterev, A.; Wysocki, G.; Bakhirkin, Y.; Thus, S.; Lewicki, R.; Fraser, M.; Tittel, F.; Curl, R. Application of quantum cascade lasers to trace gas analysis. Appl. Phys. B Lasers Opt. 2008, 90, 165–176. [Google Scholar] [CrossRef]
- van Helden, J.H.; Horrocks, S.J.; Ritchie, G.A.D. Application of quantum cascade lasers in studies of low-pressure plasmas: Characterization of rapid passage effects on density and temperature measurements. Appl. Phys. Lett. 2008, 92, 081506. [Google Scholar] [CrossRef]
- Hübner, M.; Marinov, D.; Guaitella, O.; Rousseau, A.; Röpcke, J. On time resolved gas temperature measurements in a pulsed dc plasma using quantum cascade laser absorption spectroscopy. Meas. Sci. Technol. 2012, 23, 115602. [Google Scholar] [CrossRef]
- Farooq, A.; Jeffries, J.; Hanson, R. CO2 concentration and temperature sensor for combustion gases using diode-laser absorption near 2.7 μm. Appl. Phys. B 2008, 90, 619–628. [Google Scholar] [CrossRef]
- Spearrin, R.M.; Ren, W.; Jeffries, J.B.; Hanson, R.K. Multi-band infrared CO2 absorption sensor for sensitive temperature and species measurements in high-temperature gases. Appl. Phys. B 2014, 116, 855–865. [Google Scholar] [CrossRef]
- Spearrin, R.; Goldenstein, C.; Schultz, I.; Jeffries, J.; Hanson, R. Simultaneous sensing of temperature, CO, and CO2 in a scramjet combustor using quantum cascade laser absorption spectroscopy. Appl. Phys. B 2014, 117, 689–698. [Google Scholar] [CrossRef]
- Chrystie, R.S.M.; Nasir, E.F.; Farooq, A. Ultra-fast and calibration-free temperature sensing in the intrapulse mode. Opt. Lett. 2014, 39, 6620–6623. [Google Scholar] [CrossRef] [Green Version]
- Uddi, M.; Das, A.K.; Sung, C.J. Temperature measurements in a rapid compression machine using mid-infrared H2O absorption spectroscopy near 7.6 μm. Appl. Opt. 2012, 51, 5464–5476. [Google Scholar] [CrossRef]
- Vanderover, J.; Wang, W.; Oehlschlaeger, M. A carbon monoxide and thermometry sensor based on mid-IR quantum-cascade laser wavelength-modulation absorption spectroscopy. Appl. Phys. B 2011, 103, 959–966. [Google Scholar] [CrossRef]
- Wojtas, J.; Bielecki, Z.; Stacewicz, T.; Mikołajczyk, J.; Nowakowski, M. Ultrasensitive laser spectroscopy for breath analysis. Opto-Electron. Rev. 2012, 20, 26–39. [Google Scholar] [CrossRef]
- Tuzson, B.; Zeeman, M.; Zahniser, M.; Emmenegger, L. Quantum cascade laser based spectrometer for in situ stable carbon dioxide isotope measurements. Infrared Phys. Technol. 2008, 51, 198–206. [Google Scholar] [CrossRef]
- Schwaighofer, A.; Brandstetter, M.; Lendl, B. Quantum cascade lasers (QCLs) in biomedical spectroscopy. Chem. Soc. Rev. 2017, 46, 5903–5924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojtas, J.; Stacewicz, T.; Bielecki, Z.; Rutecka, B.; Medrzycki, R.; Mikolajczyk, J. Towards optoelectronic detection of explosives. Opto-Electron. Rev. 2013, 21, 210–219. [Google Scholar] [CrossRef] [Green Version]
- Sumizawa, H.; Yamada, H.; Tonokura, K. Real-time monitoring of nitric oxide in diesel exhaust gas by mid-infrared cavity ring-down spectroscopy. Appl. Phys. B 2010, 100, 925–931. [Google Scholar] [CrossRef]
- Li, J.S.; Chen, W.; Fischer, H. Quantum Cascade Laser Spectrometry Techniques: A New Trend in Atmospheric Chemistry. Appl. Spectrosc. Rev. 2013, 48, 523–559. [Google Scholar] [CrossRef]
- Namjou, K.; Cai, S.; Whittaker, E.A.; Faist, J.; Gmachl, C.; Capasso, F.; Sivco, D.L.; Cho, A.Y. Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser. Opt. Lett. 1998, 23, 219–221. [Google Scholar] [CrossRef] [Green Version]
- Nelson, D.; Shorter, J.; McManus, J.; Zahniser, M. Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer. Appl. Phys. B 2002, 75, 343–350. [Google Scholar] [CrossRef]
- Welzel, S.; Hempel, F.; Hübner, M.; Lang, N.; Davies, P.B.; Röpcke, J. Quantum Cascade Laser Absorption Spectroscopy as a Plasma Diagnostic Tool: An Overview. Sensors 2010, 10, 6861–6900. [Google Scholar] [CrossRef] [Green Version]
- Gordon, I.; Rothman, L.; Hargreaves, R.; Hashemi, R.; Karlovets, E.; Skinner, F.; Conway, E.; Hill, C.; Kochanov, R.; Tan, Y.; et al. The HITRAN2020 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2022, 277, 107949. [Google Scholar] [CrossRef]
- Allan, D.W. Statistics of atomic frequency standards. Proc. IEEE 1966, 54, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Gamache, R.R.; Lamouroux, J. Predicting accurate line shape parameters for CO2 transitions. J. Quant. Spectrosc. Radiat. Transf. 2013, 130, 158–171. [Google Scholar] [CrossRef]
- Normand, E.; McCulloch, M.; Duxbury, G.; Langford, N. Fast, real-time spectrometer based on a pulsed quantum-cascade laser. Opt. Lett. 2003, 28, 16–18. [Google Scholar] [CrossRef]
- Herklotz, F.; Rubin, T.; Sinnreich, M.; Helmke, A.; von Haimberger, T.; Heyne, K. Fast Simultaneous CO2 Gas Temperature and Concentration Measurements by Quantum Cascade Laser Absorption Spectroscopy. Appl. Sci. 2022, 12, 5057. [Google Scholar] [CrossRef]
- Jousten, K.; Hendricks, J.; Barker, D.; Douglas, K.; Eckel, S.; Egan, P.; Fedchak, J.; Flügge, J.; Gaiser, C.; Olson, D.; et al. Perspectives for a new realization of the pascal by optical methods. Metrologia 2017, 54, S146. [Google Scholar] [CrossRef]
- Rubin, T.; Silander, I.; Zakrisson, J.; Hao, M.; Forssén, C.; Asbahr, P.; Bernien, M.; Kussicke, A.; Liu, K.; Zelan, M.; et al. Thermodynamic effects in a gas modulated Invar-based dual Fabry–Pérot cavity refractometer. Metrologia 2022, 59, 035003. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herklotz, F.; Rubin, T.; von Haimberger, T.; Heyne, K. CO2 Gas Temperature Sensing near Room Temperature by a Quantum Cascade Laser in Inter Pulse Mode. Photonics 2022, 9, 465. https://doi.org/10.3390/photonics9070465
Herklotz F, Rubin T, von Haimberger T, Heyne K. CO2 Gas Temperature Sensing near Room Temperature by a Quantum Cascade Laser in Inter Pulse Mode. Photonics. 2022; 9(7):465. https://doi.org/10.3390/photonics9070465
Chicago/Turabian StyleHerklotz, Frank, Tom Rubin, Theodore von Haimberger, and Karsten Heyne. 2022. "CO2 Gas Temperature Sensing near Room Temperature by a Quantum Cascade Laser in Inter Pulse Mode" Photonics 9, no. 7: 465. https://doi.org/10.3390/photonics9070465
APA StyleHerklotz, F., Rubin, T., von Haimberger, T., & Heyne, K. (2022). CO2 Gas Temperature Sensing near Room Temperature by a Quantum Cascade Laser in Inter Pulse Mode. Photonics, 9(7), 465. https://doi.org/10.3390/photonics9070465