Resolution Enhancement in Coherent Diffraction Imaging Using High Dynamic Range Image
Abstract
:1. Introduction
2. Materials and Methods
2.1. Proposed Method
2.2. Experimental Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gerchberg, R.W.; Saxton, W.O.A. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 1972, 35, 237–250. [Google Scholar]
- Gerchberg, R. Super-resolution through Error Energy Reduction. Opt. Acta Int. J. Opt. 1974, 21, 709–720. [Google Scholar] [CrossRef]
- Fienup, J.R. Phase retrieval algorithms: A comparison. Appl. Opt. 1982, 35, 21. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Liu, Q.; Li, Y.; Xu, B.; He, Z. High-resolution multi-wavelength lensless diffraction imaging with adaptive dispersion correction. Opt. Express 2021, 5, 29. [Google Scholar]
- Beata, Z.; Zoltan, J.; Nikita, M. Towards Realistic Simulations of Macromolecules Irradiated under the Conditions of Coherent Diffraction Imaging with an X-ray Free-Electron Laser. Photonics 2015, 2, 256–269. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Liu, Q.; Li, Y.; Zhang, J.; He, Z. High-resolution multi-planar coherent diffraction imaging with multimode fiber source. Opt. Lasers Eng. 2021, 140, 106530. [Google Scholar] [CrossRef]
- Miao, J.; Ishikawa, T.; Robinson, I.K.; Murnane, M.M. Beyond crystallography: Diffractive imaging using coherent x-ray light sources. Science 2015, 348, 530–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chowdhury, S.; Eldridge, W.J.; Wax, A.; Izatt, J. Refractive index tomography with structured illumination. Optica 2017, 4, 537–545. [Google Scholar] [CrossRef] [Green Version]
- Horstmeyer, R.; Yang, C. Diffraction tomography with Fourier ptychography. Optica 2015, 3, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, H.; Rodenburg, J.M. Movable Aperture Lensless Transmission Microscopy: A Novel Phase Retrieval Algorithm. Phys. Rev. Lett. 2004, 93, 023903. [Google Scholar] [CrossRef] [Green Version]
- Rodenburg, J.M.; Faulkner, H. A phase retrieval algorithm for shifting illumination. Appl. Phys. Lett. 2004, 91, 233117. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wen, D.; Song, Z.; Jiang, T.; Zhang, W.; Liu, G.; Wei, X. Imaging Correlography Using Ptychography. Appl. Sci. 2019, 9, 4377. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Burdet, N.; Batey, D.; Robinson, I. Multi-Modal Ptychography: Recent Developments and Applications. Appl. Sci. 2018, 8, 1054. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Bo, C.; Morrison, G.R.; Vila-Comamala, J.; Robinson, I.K. Phase retrieval by coherent modulation imaging. Nat. Commun. 2016, 7, 13367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, X.; Hua, T.; Pan, X.; Cheng, L.; Zhu, J. High-quality laser beam diagnostics using modified coherent phase modulation imaging. Opt. Express 2018, 26, 6239. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Dong, Z.; Fan, F.; Feng, Y.; Lou, Y.; Jiang, X. Characterization of Spatial Light Modulator Based on the Phase in Fourier Domain of the Hologram and Its Applications in Coherent Imaging. Appl. Sci. 2018, 8, 1146. [Google Scholar] [CrossRef] [Green Version]
- Zheng, G.; Horstmeyer, R.; Yang, C. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics 2013, 7, 739. [Google Scholar] [CrossRef] [PubMed]
- Zuo, C.; Sun, J.; Li, J.; Asundi, A.; Chen, Q. Wide-field high-resolution 3D microscopy with Fourier ptychographic diffraction tomography. Opt. Lasers Eng. 2020, 128, 106003. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Qi, M.; Liu, Y.; Xue, X.; Chen, D.; Qu, J. Super-Resolution Image Reconstruction Based on Single-Molecule Localization Algorithm. Photonics 2021, 8, 273. [Google Scholar] [CrossRef]
- Cocco, D. Recent Developments in UV Optics for Ultra-Short, Ultra-Intense Coherent Light Sources. Photonics 2015, 1, 10–49. [Google Scholar] [CrossRef]
- Bao, P.; Zhang, F.; Pedrini, G.; Osten, W. Phase retrieval using multiple illumination wavelengths. Opt. Lett. 2008, 4, 309. [Google Scholar] [CrossRef]
- Lucat, A.; Hegedus, R.; Pacanowski, R. Diffraction effects detection for HDR image-based measurements. Opt. Express 2017, 25, 27146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Z.; Pan, X.; Yan, K.; Qian, W.; Cheng, L. Partial saturation-aided resolution enhancement for digital holography. Appl. Opt. 2018, 57, 3884. [Google Scholar] [CrossRef] [PubMed]
- Debevec, P.E.; Malik, J. Recovering high dynamic range radiance maps from photographs. Siggraph 1997. [Google Scholar] [CrossRef]
- Golub, G.H. Singular value decomposition and least squares solutions. Numer. Math. 1970, 14, 403–420. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Liu, Q.; Zhao, S.; Sun, W.; Xu, B.; He, Z. Resolution Enhancement in Coherent Diffraction Imaging Using High Dynamic Range Image. Photonics 2021, 8, 370. https://doi.org/10.3390/photonics8090370
Liu Y, Liu Q, Zhao S, Sun W, Xu B, He Z. Resolution Enhancement in Coherent Diffraction Imaging Using High Dynamic Range Image. Photonics. 2021; 8(9):370. https://doi.org/10.3390/photonics8090370
Chicago/Turabian StyleLiu, Yuanyuan, Qingwen Liu, Shuangxiang Zhao, Wenchen Sun, Bingxin Xu, and Zuyuan He. 2021. "Resolution Enhancement in Coherent Diffraction Imaging Using High Dynamic Range Image" Photonics 8, no. 9: 370. https://doi.org/10.3390/photonics8090370
APA StyleLiu, Y., Liu, Q., Zhao, S., Sun, W., Xu, B., & He, Z. (2021). Resolution Enhancement in Coherent Diffraction Imaging Using High Dynamic Range Image. Photonics, 8(9), 370. https://doi.org/10.3390/photonics8090370