Comparison of Refractive and Visual Outcomes after Transepithelial Photorefractive Keratectomy (TransPRK) in Low versus Moderate Myopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Patients
2.2. Clinical Evaluation
2.3. Treatment Plan
2.4. Surgical Technique
2.5. Excimer Laser
2.6. Data Analysis
3. Results
3.1. Demographics
3.2. Efficacy
3.3. Safety
3.4. Predictability
3.5. Adverse Events
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aslanides, I.M.; Padroni, S.; Arba Mosquera, S.; Ioannides, A.; Mukherjee, A. Comparison of Single-Step Reverse Transepithelial All-Surface Laser Ablation (ASLA) to Alcohol-Assisted Photorefractive Keratectomy. Clin. Ophthalmol. 2012, 6, 973–980. [Google Scholar] [CrossRef] [Green Version]
- Lin, D.T.C.; Holland, S.P.; Verma, S.; Hogden, J.; Arba-Mosquera, S. Postoperative Corneal Asphericity in Low, Moderate, and High Myopic Eyes After Transepithelial PRK Using a New Pulse Allocation. J. Refract. Surg. 2017, 33, 820–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arba-Mosquera, S.; Hollerbach, T. Ablation Resolution in Laser Corneal Refractive Surgery: The Dual Fluence Concept of the AMARIS Platform. Adv. Opt. Technol. 2010, 2010, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Arba Mosquera, S.; Awwad, S.T. Theoretical Analyses of the Refractive Implications of Transepithelial PRK Ablations. Br. J. Ophthalmol. 2013, 97, 905–911. [Google Scholar] [CrossRef]
- de Ortueta, D.; Arba Mosquera, S. Mathematical Properties of Asphericity: A Method to Calculate with Asphericities. J. Refract. Surg. 2008, 24, 119–121. [Google Scholar] [CrossRef] [PubMed]
- Arba-Mosquera, S.; Merayo-Lloves, J.; de Ortueta, D. Asphericity Analysis Using Corneal Wavefront and Topographic Meridional Fits. J. Biomed. Opt. 2010, 15, 028003. [Google Scholar] [CrossRef] [Green Version]
- Arba-Mosquera, S.; de Ortueta, D. Analysis of Optimized Profiles for “aberration-Free” Refractive Surgery. Ophthalmic Physiol. Opt. 2009, 29, 535–548. [Google Scholar] [CrossRef] [PubMed]
- Arbelaez, M.C.; Vidal, C.; Jabri, B.A.; Arba Mosquera, S. LASIK for Myopia with Aspheric “Aberration Neutral” Ablations Using the ESIRIS Laser System. J. Refract. Surg. 2009, 25, 991–999. [Google Scholar] [CrossRef] [PubMed]
- Arba-Mosquera, S.; de Ortueta, D. Geometrical Analysis of the Loss of Ablation Efficiency at Non-Normal Incidence. Opt. Express 2021, 16, 3877–3895. [Google Scholar] [CrossRef]
- de Ortueta, D.; Mosquera, S.A.; Haecker, C. Theoretical Considerations on the Hyperopic Shift Effect Observed When Treating Negative Cylinder in Laser Refractive Surgery. J. Emmetropia 2010, 1, 23–28. [Google Scholar]
- Vinciguerra, P.; Camesasca, F.I.; Vinciguerra, R.; Arba-Mosquera, S.; Torres, I.; Morenghi, E.; Randleman, J.B. Advanced Surface Ablation With a New Software for the Reduction of Ablation Irregularities. J. Refract. Surg. 2017, 33, 89–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Ortueta, D. Transepithelial Photorefractive Keratektomy after a Clear Lens Exchange. Vision 2021, 5, 8. [Google Scholar] [CrossRef] [PubMed]
- Arba-Mosquera, S.; Merayo-Lloves, J.; de Ortueta, D. Clinical Effects of Pure Cyclotorsional Errors during Refractive Surgery. Invest. Ophthalmol. Vis. Sci. 2008, 49, 4828–4836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adib-Moghaddam, S.; Soleyman-Jahi, S.; Tofighi, S.; Tefagh, G.; Arba-Mosquera, S.; Kontadakis, G.; Kymionis, G.D. Factors Associated With Ocular Cyclotorsion Detected by High-Speed Dual-Detection Eye Tracker During Single-Step Transepithelial Photorefractive Keratectomy. J. Refract. Surg. 2018, 34, 736–744. [Google Scholar] [CrossRef]
- de Ortueta, D.; Schreyger, F.D. Centration on the Cornea Vertex Normal during Hyperopic Refractive Photoablation Using Videokeratoscopy. J. Refract. Surg. 2007, 23, 198–200. [Google Scholar] [CrossRef]
- Arbelaez, M.C.; Vidal, C.; Arba-Mosquera, S. Clinical Outcomes of Corneal Vertex versus Central Pupil References with Aberration-Free Ablation Strategies and LASIK. Invest. Ophthalmol. Vis. Sci. 2008, 49, 5287–5294. [Google Scholar] [CrossRef]
- Brunsmann, U.; Sauer, U.; Dressler, K.; Triefenbach, N.; Mosquera, S.A. Minimisation of the Thermal Load of the Ablation in High-Speed Laser Corneal Refractive Surgery: The ‘Intelligent Thermal Effect Control’ of the AMARIS Platform. J. Refract. Surg. 2010, 57, 466–479. [Google Scholar] [CrossRef]
- de Ortueta, D.; Magnago, T.; Triefenbach, N.; Arba Mosquera, S.; Sauer, U.; Brunsmann, U. In Vivo Measurements of Thermal Load during Ablation in High-Speed Laser Corneal Refractive Surgery. J. Refract. Surg. 2012, 28, 53–58. [Google Scholar] [CrossRef]
- Simon, G.; Legeais, J.M.; Parel, J.M. [Optical power of the corneal epithelium]. J. Fr. Ophtalmol. 1993, 16, 41–47. [Google Scholar]
- Reinstein, D.Z.; Archer, T.J.; Gobbe, M.; Silverman, R.H.; Coleman, D.J. Epithelial Thickness in the Normal Cornea: Three-Dimensional Display with Artemis Very High-Frequency Digital Ultrasound. J. Refract. Surg. 2008, 24, 571–581. [Google Scholar] [CrossRef]
- Feng, Y.; Simpson, T.L. Comparison of Human Central Cornea and Limbus in Vivo Using Optical Coherence Tomography. Optom. Vis. Sci. 2005, 82, 416–419. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Simpson, T.L. Corneal, Limbal, and Conjunctival Epithelial Thickness from Optical Coherence Tomography. Optom. Vis. Sci. 2008, 85, E880–E883. [Google Scholar] [CrossRef]
- Gatinel, D.; Racine, L.; Hoang-Xuan, T. Contribution of the Corneal Epithelium to Anterior Corneal Topography in Patients Having Myopic Photorefractive Keratectomy. J. Cataract Refract. Surg. 2007, 33, 1860–1865. [Google Scholar] [CrossRef] [PubMed]
- Haque, S.; Jones, L.; Simpson, T. Thickness Mapping of the Cornea and Epithelium Using Optical Coherence Tomography. Optom. Vis. Sci. 2008, 85, E963–E976. [Google Scholar] [CrossRef]
- Salah-Mabed, I.; Saad, A.; Gatinel, D. Topography of the Corneal Epithelium and Bowman Layer in Low to Moderately Myopic Eyes. J. Cataract Refract. Surg. 2016, 42, 1190–1197. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Tao, A.; Jiang, H.; Xu, Z.; Perez, V.; Wang, J. Vertical and Horizontal Corneal Epithelial Thickness Profile Using Ultra-High Resolution and Long Scan Depth Optical Coherence Tomography. PLoS ONE 2014, 9, e97962. [Google Scholar] [CrossRef] [PubMed]
- Reinstein, D.Z.; Gobbe, M.; Archer, T.J.; Silverman, R.H.; Coleman, D.J. Epithelial, Stromal, and Total Corneal Thickness in Keratoconus: Three-Dimensional Display with Artemis Very-High Frequency Digital Ultrasound. J. Refract. Surg. 2010, 26, 259–271. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.V.; McLaren, J.W.; Hodge, D.O.; Bourne, W.M. Confocal Microscopy in Vivo in Corneas of Long-Term Contact Lens Wearers. Invest. Ophthalmol. Vis. Sci. 2002, 43, 995–1003. [Google Scholar]
- Ivarsen, A.; Fledelius, W.; Hjortdal, J.Ø. Three-Year Changes in Epithelial and Stromal Thickness after PRK or LASIK for High Myopia. Invest. Ophthalmol. Vis. Sci. 2009, 50, 2061. [Google Scholar] [CrossRef]
- Vega-Estrada, A.; Mimouni, M.; Espla, E.; Alió del Barrio, J.; Alio, J.L. Corneal Epithelial Thickness Intrasubject Repeatability and Its Relation With Visual Limitation in Keratoconus. Am. J. Ophthalmol. 2019, 200, 255–262. [Google Scholar] [CrossRef]
- Reinstein, D.Z.; Srivannaboon, S.; Gobbe, M.; Archer, T.; Silverman, R.H.; Sutton, H.; Coleman, D.J. Epithelial Thickness Profile Changes Induced by Myopic LASIK as Measured by Artemis Very High-Frequency Digital Ultrasound. J. Refract. Surg. 2009, 25, 444–450. [Google Scholar] [CrossRef] [Green Version]
- Reinstein, D.Z.; Archer, T.J.; Gobbe, M. Corneal Epithelial Thickness Profile in the Diagnosis of Keratoconus. J. Refract. Surg. 2009, 25, 604–610. [Google Scholar] [CrossRef]
- Seiler, T.; Kriegerowski, M.; Schnoy, N.; Bende, T. Ablation Rate of Human Corneal Epithelium and Bowman’s Layer with the Excimer Laser (193 Nm). Refract. Corneal Surg. 1990, 6, 99–102. [Google Scholar] [CrossRef]
- Arba-Mosquera, S.; Shraiki, M. Analysis of the PMMA and Cornea Temperature Rise during Excimer Laser Ablation. J. Mod. Opt. 2010, 57, 400–407. [Google Scholar] [CrossRef]
- Kaluzny, B.J.; Cieslinska, I.; Mosquera, S.A.; Verma, S. Single-Step Transepithelial PRK vs Alcohol-Assisted PRK in Myopia and Compound Myopic Astigmatism Correction. Medicine 2016, 95, e1993. [Google Scholar] [CrossRef]
- Antonios, R.; Abdul Fattah, M.; Arba Mosquera, S.; Abiad, B.H.; Sleiman, K.; Awwad, S.T. Single-Step Transepithelial versus Alcohol-Assisted Photorefractive Keratectomy in the Treatment of High Myopia: A Comparative Evaluation over 12 Months. Br. J. Ophthalmol. 2017, 101, 1106–1112. [Google Scholar] [CrossRef]
- Camellin, M.; Arba Mosquera, S. Simultaneous Aspheric Wavefront-Guided Transepithelial Photorefractive Keratectomy and Phototherapeutic Keratectomy to Correct Aberrations and Refractive Errors after Corneal Surgery. J. Cataract Refract. Surg. 2010, 36, 1173–1180. [Google Scholar] [CrossRef] [PubMed]
- Adib-Moghaddam, S.; Soleyman-Jahi, S.; Adili-Aghdam, F.; Arba Mosquera, S.; Hoorshad, N.; Tofighi, S. Single-Step Transepithelial Photorefractive Keratectomy in High Myopia: Qualitative and Quantitative Visual Functions. Int. J. Ophthalmol. 2017, 10, 445–452. [Google Scholar] [CrossRef] [PubMed]
- de Ortueta, D.; von Rüden, D.; Verma, S.; Magnago, T.; Arba-Mosquera, S. Transepithelial Photorefractive Keratectomy in Moderate to High Astigmatism With a Non-Wavefront–Guided Aberration-Neutral Ablation Profile. J. Refract. Surg. 2018, 34, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Fadlallah, A.; Fahed, D.; Khalil, K.; Dunia, I.; Menassa, J.; El Rami, H.; Chlela, E.; Fahed, S. Transepithelial Photorefractive Keratectomy: Clinical Results. J. Cataract Refract. Surg. 2011, 37, 1852–1857. [Google Scholar] [CrossRef]
- Eckard, A.; Stave, J.; Guthoff, R.F. In Vivo Investigations of the Corneal Epithelium with the Confocal Rostock Laser Scanning Microscope (RLSM). Cornea 2006, 25, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Sin, S.; Simpson, T.L. The Repeatability of Corneal and Corneal Epithelial Thickness Measurements Using Optical Coherence Tomography. Optom. Vis. Sci. 2006, 83, 360–365. [Google Scholar] [CrossRef]
- Jun, I.; Yong Kang, D.S.; Arba-Mosquera, S.; Jean, S.K.; Kim, E.K.; Seo, K.Y.; Kim, T.-I. Clinical Outcomes of Mechanical and Transepithelial Photorefractive Keratectomy in Low Myopia with a Large Ablation Zone. J. Cataract Refract. Surg. 2019, 45, 977–984. [Google Scholar] [CrossRef]
- Lee, H.K.; Lee, K.S.; Kim, J.K.; Kim, H.C.; Seo, K.R.; Kim, E.K. Epithelial Healing and Clinical Outcomes in Excimer Laser Photorefractive Surgery Following Three Epithelial Removal Techniques: Mechanical, Alcohol, and Excimer Laser. Am. J. Ophthalmol. 2005, 139, 56–63. [Google Scholar] [CrossRef]
- Lin, D.T.C.; Holland, S.P.; Verma, S.; Hogden, J.; Arba-Mosquera, S. Immediate and Short Term Visual Recovery after SmartSurf(ACE) Photorefractive Keratectomy. J. Optom. 2019, 12, 240–247. [Google Scholar] [CrossRef]
- Jun, I.; Kang, D.S.Y.; Arba-Mosquera, S.; Kim, E.K.; Seo, K.Y.; Kim, T.-I. Clinical Outcomes of Transepithelial Photorefractive Keratectomy According to Epithelial Thickness. J. Refract. Surg. 2018, 34, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.-J.; Yan, H.-T.; Nakahori, Y. Evaluation of the Effectiveness of Laser in Situ Keratomileusis and Photorefractive Keratectomy for Myopia: A Meta-Analysis. J. Med. Investig. 2003, 50, 180–186. [Google Scholar] [PubMed]
- Luger, M.H.A.; Ewering, T.; Arba-Mosquera, S. Myopia Correction with Transepithelial Photorefractive Keratectomy versus Femtosecond-Assisted Laser in Situ Keratomileusis: One-Year Case-Matched Analysis. J. Cataract Refract. Surg. 2016, 42, 1579–1587. [Google Scholar] [CrossRef]
- de Ortueta, D.; von Rüden, D. Transepithelial photorefractive keratectomy: Results and clinical experiences. Ophthalmologe 2018, 116, 534–541. [Google Scholar] [CrossRef] [PubMed]
Low Myopia X ± SD Range | Moderate Myopia X ± SD Range | p Value | |||
---|---|---|---|---|---|
Number of eyes | 296 | 296 | |||
Age (years) | 35 ± 11 | 18 to 64 | 32 ± 9 | 18 to 65 | <0.0001 |
UDVA (Snellen) | 20/80 ± 10 | 20/20 to 20/400 | 20/250 ± 15 | 20/40 to 20/2000 | <0.0001 |
Spherical Equivalent (D) | −1.44 ± 0.37 | −2.0 to −0.5 | −3.32 ± 0.87 | −5.0 to −2.12 | <0.0001 |
Astigmatism (D) | 0.77 ± 0.64 | 0 to 3.25 | 0.77 ± 0.81 | 0 to 4.75 | 0.5 |
Maximum myopic meridian (D) | −1.89 ± 0.51 | −3.50 to −0 | −3.77 ± 0.98 | −6.87 to −2.13 | <0.0001 |
CDVA (Snellen) | 20/19 ± 4 | 20/12 to 20/50 | 20/18 ± 3 | 20/12 to 20/32 | 0.4 |
Central corneal Thickness (µm) | 551 ± 35 | 442 to 666 | 550 ± 33 | 467 to 657 | 0.3 |
Optical zone (mm) | 7.1 ± 0.2 | 6.7 to 7.7 | 6.8 ± 0.2 | 6.3 to 7.4 | <0.0001 |
Total ablation zone (mm) | 8.0 ± 0.3 | 7.5 to 9.5 | 8.1 ± 0.3 | 7.4 to 9.0 | <0.0001 |
Total ablation depth (µm) | 90 ± 9 | 67 to 142 | 118 ± 16 | 88 to 175 | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Ortueta, D.; von Rüden, D.; Arba-Mosquera, S. Comparison of Refractive and Visual Outcomes after Transepithelial Photorefractive Keratectomy (TransPRK) in Low versus Moderate Myopia. Photonics 2021, 8, 262. https://doi.org/10.3390/photonics8070262
de Ortueta D, von Rüden D, Arba-Mosquera S. Comparison of Refractive and Visual Outcomes after Transepithelial Photorefractive Keratectomy (TransPRK) in Low versus Moderate Myopia. Photonics. 2021; 8(7):262. https://doi.org/10.3390/photonics8070262
Chicago/Turabian Stylede Ortueta, Diego, Dennis von Rüden, and Samuel Arba-Mosquera. 2021. "Comparison of Refractive and Visual Outcomes after Transepithelial Photorefractive Keratectomy (TransPRK) in Low versus Moderate Myopia" Photonics 8, no. 7: 262. https://doi.org/10.3390/photonics8070262
APA Stylede Ortueta, D., von Rüden, D., & Arba-Mosquera, S. (2021). Comparison of Refractive and Visual Outcomes after Transepithelial Photorefractive Keratectomy (TransPRK) in Low versus Moderate Myopia. Photonics, 8(7), 262. https://doi.org/10.3390/photonics8070262