Performances of PMMA-Based Optical Fiber Bragg Grating Sensor in Extended Temperature Range
Abstract
1. Introduction
2. Experiments
3. Results
3.1. POFBG Humidity Sensitivity
3.2. POFBG Temperature Sensitivity
3.3. Analysis of POFBG Sensing Performance
- ρp, the polymer density, is a linear function of moisture;
- f (0 ≤ f ≤ 1) increases with temperature, and f = fc at the critical temperature of 50 °C;
- ki, is a weak function of temperature and humidity, approximately constant; and
- S slowly decreases with temperature.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Polishuk, P. Plastic optical fibers branch out. IEEE Commun. Mag. 2006, 44, 140–148. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, W.; Webb, D.J.; Peng, G.-D. Optical fiber temperature and humidity sensor. Electron. Lett. 2010, 46, 643. [Google Scholar] [CrossRef]
- Zhang, W.; Webb, D.J.; Lao, L.; Hammond, D.; Carpenter, M.; Williams, C. Water content detection in aviation fuel by using PMMA based optical fiber grating. Sens. Actuators B Chem. 2019, 282, 774–779. [Google Scholar] [CrossRef]
- Zhang, W.; Webb, D.J. Humidity responsivity of poly(methyl methacrylate)-based optical fiber Bragg grating sensors. Opt. Lett. 2014, 39, 3026–3029. [Google Scholar] [CrossRef] [PubMed]
- Webb, D.J.; Kalli, K. Polymer fiber Bragg gratings. In Fiber Bragg Grating Sensors: Thirty Years from Research to Market; Cusano, A., Cutolo, A., Albert, J., Eds.; Bentham Science Publishers Ltd.: New York, NY, USA, 2010. [Google Scholar]
- Peng, G.-D. Handbook of Optical Fibers; Springer Nature Singapore Pte Ltd.: Singapore, 2019. [Google Scholar]
- Abang, A.; Webb, D.J. Demountable connection for polymer optical fiber grating sensors. Opt. Eng. 2012, 51, 080503. [Google Scholar] [CrossRef]
- Zhang, W.; Webb, D.J.; Peng, G.-D. Investigation into time response of polymer fibre Bragg grating based humidity sensors. IEEE J. Lightwave Technol. 2012, 30, 1090–1096. [Google Scholar] [CrossRef]
- Zhang, W.; Webb, D.J. General Expression of Poly(Methyl Methacrylate) Optical Fiber Bragg Grating Sensing Response. IEEE Photonics Technol. Lett. 2019, 31, 234–237. [Google Scholar] [CrossRef]
- Salem; David, R. Structure Formation in Polymeric Fibers; Hanser-Gardner Publications: Cincinnati, OH, USA, 2001. [Google Scholar]
- Carroll, K.E.; Zhang, C.; Webb, D.J.; Kalli, K.; Argyros, A.; Large, M.C.J. Thermal response of Bragg gratings in PMMA mi-crostructured optical fibers. Opt. Express 2007, 15, 8844–8850. [Google Scholar] [CrossRef] [PubMed]
- Stajanca, P.; Cetinkaya, O.; Schukar, M.; Mergo, P.; Webb, D.J.; Krebber, K. Molecular alignment relaxation in polymer optical fibers for sensing applications. Opt. Fiber Technol. 2016, 28, 11–17. [Google Scholar] [CrossRef]
- Ishigure, T.; Hirai, M.; Sato, M.; Koike, Y. Graded-Index Plastic Optical Fiber with High Mechanical Properties Enabling Easy Network Installations. I. J. Appl. Polym. Sci. 2004, 91, 404–409. [Google Scholar] [CrossRef]
- Zhang, W.; Webb, D.J.; Peng, G.-D. Enhancing the sensitivity of poly(methyl methacrylate) based optical fiber Bragg grating temperature sensors. Opt. Lett. 2015, 40, 4046–4049. [Google Scholar] [CrossRef] [PubMed]
- Woyessaa, G.; Pedersen, J.K.M.; Nielsenc, K.; Bang, O. Enhanced pressure and thermal sensitivity of polymer optical fiber Bragg grating sensors. Opt. Laser Technol. 2020, 130, 106357. [Google Scholar] [CrossRef]
- Prod’Homme, L. A new approach to the thermal change in the refractive index of glasses. Phys. Chem. Glasses 1960, 1, 119–122. [Google Scholar]
- Waxler, R.M.; Horowitz, D.; Feldman, A. Optical and physical parameters of Plexiglas 55 and Lexan. Appl. Opt. 1979, 18, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Startsev, O.V.; Rudnev, V.P. Reversible moisture effects in the climatic ageing of organic glass. Polym. Degrad. Stab. 1993, 39, 373–379. [Google Scholar] [CrossRef]
- Thomas, A.M. Moisture permeability, diffusion and sorption in organic film-forming materials. J. Appl. Chem. 1951, 1, 141–158. [Google Scholar] [CrossRef]
- Liu, Y.; Daum, P.H. Relationship of refractive index to mass density and self-consistency of mixing rules for multicomponent mixtures like ambient aerosols. Aerosol Sci. 2008, 39, 974–986. [Google Scholar] [CrossRef]
- Watanabe, T.; Ooba, N.; Hida, Y.; Hikita, M. Influence of humidity on refractive index of polymers for optical waveguide and its temperature dependence. Appl. Phys. Lett. 1998, 72, 1533. [Google Scholar] [CrossRef]
- Turner, D.T. Polymethyl methacrylate plus water: Sorption kinetics and volumetric changes. Polymer 1982, 23, 197–202. [Google Scholar] [CrossRef]
- Patel, M.P.; Davy, K.W.M.; Braden, M. Refractive index and molar refraction of methacrylate monomers and polymers. Biomaterials 1992, 13, 643–645. [Google Scholar] [CrossRef]
- Fan, X. Mechanics of Moisture for Polymers: Fundamental Concepts and Model Study. In Proceedings of the 9th International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, EuroSimE 2008, Freiburg im Breisgau, Germany, 20–23 April 2008. [Google Scholar]
- Zhang, W.; Webb, D.J. Factors Influencing the Temperature Sensitivity of PMMA Based Optical Fiber Bragg Gratings; Photonics Europe: Brussels, Belgium, 2014. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Webb, D.J. Performances of PMMA-Based Optical Fiber Bragg Grating Sensor in Extended Temperature Range. Photonics 2021, 8, 180. https://doi.org/10.3390/photonics8060180
Zhang W, Webb DJ. Performances of PMMA-Based Optical Fiber Bragg Grating Sensor in Extended Temperature Range. Photonics. 2021; 8(6):180. https://doi.org/10.3390/photonics8060180
Chicago/Turabian StyleZhang, Wei, and David J. Webb. 2021. "Performances of PMMA-Based Optical Fiber Bragg Grating Sensor in Extended Temperature Range" Photonics 8, no. 6: 180. https://doi.org/10.3390/photonics8060180
APA StyleZhang, W., & Webb, D. J. (2021). Performances of PMMA-Based Optical Fiber Bragg Grating Sensor in Extended Temperature Range. Photonics, 8(6), 180. https://doi.org/10.3390/photonics8060180