Investigation on Speckle-Free Imaging at the Output of a Multimode Fiber under Various Mode Excitation Conditions
Abstract
:1. Introduction
2. Theoretical Analysis
2.1. Various Modal Power Distribution by Varying the Tilt Angle of the Gaussian
2.2. Calculation of the Speckle Contrast at the Output of a Multimode Fiber
3. Simulation Results and Discussion
3.1. Various Modal Power Distribution by Varying the Tilt Angle of the Gaussian Beam
3.2. Speckle-Free Imaging under the Various Modal Power Distributions
LP02: U = 4.7652, W = 438.3741, τ02(s) = 156.685 × 10−12(s·m−1) × L(m);
LP12: U = 6.2146, W = 438.3559, τ12(s) = 156.698 × 10−12(s·m−1) × L(m);
LP21: U = 4.4569, W = 438.3773, τ21(s) = 156.683 × 10−12(s·m−1) × L(m);
LP01: U = 1.8893, W = 438.3959, τ01(s) = 156.670 × 10−12(s·m−1) × L(m).
T3 = |τ11 − τ21| = 0.8 × 10−14(s·m−1) × L(m); T4 = |τ11 − τ01| = 0.5 × 10−14(s·m−1) × L(m);
T5 = |τ02 − τ12| = 1.3 × 10−14(s·m−1) × L(m); T6 = |τ02 − τ21| = 0.2 × 10−14(s·m−1) × L(m);
T7 = |τ02 − τ01| = 1.5 × 10−14(s·m−1) × L(m); T8 = |τ12 − τ21| = 1.5 × 10−14(s·m−1) × L(m);
T9 = |τ12 − τ01| = 2.8 × 10−14(s·m−1) × L(m); T10 = |τ21 − τ01| = 1.3 × 10−14(s·m−1) × L(m).
Tmin(s) = T6 = 0.2 × 10−14(s·m−1) × L(m).
- Tmax < tc: Interference occurs among all modes, and hence, the speckle contrast at the output of a multimode fiber is not significantly reduced. The optical fiber length L must be within 16.7 m.
- Tmax > tc > Tmin: Interference occurs among some modes, and hence, the speckle contrast at the output of a multimode fiber is significantly reduced. The optical fiber length L must be in the following range: 16.7 m < L < 234.1 m.
- Tmin > tc: Interference among all modes ceases, and hence, the speckle contrast at the output of a multimode fiber is equal to 0. The optical fiber length L must exceed 234.1 m.
4. Experimental Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murayama, M.; Nakayama, Y.; Yamazaki, K.; Hoshina, Y.; Watanabe, H.; Fuutagawa, N.; Kawanishi, H.; Yemura, T.; Narui, H. Watt-class green (530 nm) and blue (465 nm) laser diodes. Phys. Status Solidi A 2018, 215, 1700513. [Google Scholar] [CrossRef]
- Chellappan, K.V.; Erden, E.; Urey, H. Laser-based displays: A review. Appl. Opt. 2010, 49, F79–F98. [Google Scholar] [CrossRef]
- Humeau-Heurtier, A.; Mahe, G.; Durand, S.; Abraham, P. Multiscale entropy study of medical laser speckle contrast images. IEEE Trans. Biomed. Eng. 2012, 60, 872–879. [Google Scholar] [CrossRef] [Green Version]
- Feng, P.; Yang, L.; Wen, X. Coherent noise reduction in digital holographic microscopy by averaging multiple holograms recorded with a multimode laser. Opt. Express 2017, 25, 21815–21825. [Google Scholar]
- Chen, H.; Pan, J.; Yang, Z. Speckle reduction using deformable mirrors with diffusers in a laser pico-projector. Opt. Express 2017, 25, 18140–18151. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, X.; Zhu, W.; Cheng, X.; Xiang, D.; Shi, F. Speckle noise reduction in optical coherence tomography images based on edge-sensitive cGAN. Biomed. Opt. Express 2018, 9, 5129–5146. [Google Scholar] [CrossRef]
- Ai, J.; Liu, R.; Tang, B.; Jia, L.; Zhao, J.; Zhou, F. A refined bilateral filtering algorithm based on adaptively-trimmed-statistics for speckle reduction in SAR imagery. Biomed. IEEE Access 2019, 7, 103443–103455. [Google Scholar] [CrossRef]
- Kubota, S.; Goodman, J.W. Very efficient speckle contrast reduction realized by moving diffuser device. Appl. Opt. 2010, 49, 4385–4391. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.C.; Yoo, S.S.; Lee, S.Y.; Park, C.; Park, S.; Kwon, J.W.; Lee, S. Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser. J. Disp. Technol. 2006, 27, 91–96. [Google Scholar] [CrossRef]
- Sun, M.; Lu, Z. Speckle suppression with a rotating light pipe. Opt. Eng. 2010, 49, 024202. [Google Scholar] [CrossRef]
- Lapchuk, A.; Kryuchyn, A.; Petrov, V.; Yurlov, V.; Klymenko, V. Full speckle suppression in laser projectors using two Barker code-type optical diffractive elements. J. Opt. Soc. Am. A 2013, 30, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Lapchuk, A.; Gorbov, I.; Le, Z.; Xiong, Q.; Lu, Z.; Prygun, O.; Pankratova, A. Experimental demonstration of a flexible DOE loop with wideband speckle suppression for laser pico-projectors. Opt. Express 2018, 26, 26188–26195. [Google Scholar] [CrossRef]
- Ma, Q.; Xu, C.Q.; Kitai, A.; Stadler, D. Speckle reduction by optimized multimode fiber combined with dielectric elastomer actuator and light pipe homogenizer. J. Disp. Technol. 2016, 12, 1162–1167. [Google Scholar] [CrossRef]
- Prygun, A.V.; Morozov, Y.M.; Kliuieva, T.Y.; Borodin, Y.A.; Le, Z. Completely passive method of speckle reduction utilizing static multimode fibre and two-dimensional diffractive optical element. J. Mod. Opt. 2019, 66, 1688–1694. [Google Scholar] [CrossRef]
- Le, Z.; Lapchuk, A.; Guo, Y.; Dai, Y.; Gorbov, I. Investigation of speckle suppression beyond human eye sensitivity by using a passive multimode fiber and a multimode fiber bundle. Opt. Express 2020, 28, 6820–6834. [Google Scholar]
- Imai, M.; Ohtsuka, Y. Speckle-pattern contrast of semiconductor laser propagating in a multimode optical fiber. Opt. Commun. 1980, 33, 4–8. [Google Scholar] [CrossRef]
- Efimov, A. Spatial coherence at the output of multimode optical fibers. Opt. Express 2014, 22, 15577–15588. [Google Scholar] [CrossRef]
- Efimov, A. Coherence and speckle contrast at the output of a stationary multimode optical fiber. Opt. Lett. 2018, 43, 4767–4770. [Google Scholar] [CrossRef]
- Halpaap, D.; Tiana-Alsina, J.; Vilaseca, M.; Masoller, C. Experimental characterization of the speckle pattern at the output of a multimode optical fiber. Opt. Express 2019, 27, 27737–27744. [Google Scholar] [CrossRef]
- Dandliker, R.; Bertholds, A.; Maystre, F. How modal noise in multimode fibers depends on source spectrum and fiber dispersion. J. Lightwave Technol. 1985, 3, 7–12. [Google Scholar] [CrossRef]
- Hlubina, P. Spectral and dispersion analysis of laser sources and multimode fibers via the statistics of the intensity pattern. J. Mod. Opt. 1994, 41, 1001–1014. [Google Scholar] [CrossRef]
- Manni, J.G.; Goodman, J.W. Versatile method for achieving 1% speckle contrast in large-venue laser projection displays using a stationary multimode optical fiber. Opt. Express 2012, 20, 11288–11315. [Google Scholar] [CrossRef] [PubMed]
- Crosignani, B.; DiPorto, P. Coherence of an electromagnetic field propagating in a weakly guiding fiber. J. Appl. Phys. 1973, 44, 4616–4617. [Google Scholar] [CrossRef]
- Gloge, D. Weakly guiding fibers. Appl. Opt. 1971, 10, 2252–2258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snyder, A.W.; Young, W.R. Modes of optical waveguides. J. Opt. Soc. Am. 1978, 68, 297–309. [Google Scholar] [CrossRef]
- Snyder, A.W.; Love, J.D. Optical Waveguide Theory; Chapman & Hall: New York, NY, USA, 1983. [Google Scholar]
- Born, M.; Wolf, E. Principles of Optics, 7th ed.; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Goodman, J.W. Speckle Phenomena in Optics: Theory and Applications; Viva Books: New Delhi, India, 2008. [Google Scholar]
- Li, J.; Wang, J.; Ding, Y.; Xu, D.; Lin, H.; Jing, F. Effect of fiber coiling mode on modes excitation. Acta Opt. Sin. 2011, 31, s100204. [Google Scholar]
Tilt Angle of the Gaussian Beam | Excitation Modes | Power Excitation Coefficient |
---|---|---|
θ = 0° | LP01 | η01 = 0.926 |
θ = 0.2° | LP11 | η11 = 0.259 |
LP02 | η02 = 0.211 | |
LP12 | η12 = 0.161 | |
LP21 | η21 = 0.148 | |
LP01 | η01 = 0.087 | |
θ = 0.5° | LP23 | η23 = 0.148 |
LP13 | η13 = 0.139 | |
LP42 | η42 = 0.091 | |
LP04 | η04 = 0.085 | |
LP32 | η32 = 0.081 | |
LP14 | η14 = 0.081 | |
LP33 | η33 = 0.076 | |
θ = 1° | LP26 | η26 = 0.090 |
LP36 | η36 = 0.078 | |
LP45 | η45 = 0.074 | |
LP55 | η55 = 0.070 | |
LP17 | η17 = 0.068 | |
LP84 | η84 = 0.067 | |
LP64 | η64 = 0.056 | |
LP07 | η07 = 0.052 |
Tilt Angle of the Gaussian Beam | Group Delay Time (s) of the Excitation Modes | Maximum Delay Difference Tmax (s) and Minimum Delay Difference Tmin (s) | The Degree of Speckle Reduction Corresponds to the Required Length of Multimode Fiber |
---|---|---|---|
θ = 0.5° | τ23 = 156.760 × 10−12L τ13 = 156.736 × 10−12L τ42 = 156.751 × 10−12L τ04 = 156.762 × 10−12L τ32 = 156.731 × 10−12L τ14 = 156.790 × 10−12L τ33 = 156.785 × 10−12L | Tmax = 5.9 × 10−14L Tmin = 0.2 × 10−14L | No significant reduction in speckle contrast: L < 7.9 m Significant reduction in speckle contrast: 7.9 m < L < 234.1 m Speckle-free imaging: L > 234.1 m |
θ = 1° | τ26 = 156.993 × 10−12L τ36 = 157.042 × 10−12L τ45 = 156.984 × 10−12L τ55 = 157.030 × 10−12L τ17 = 157.048 × 10−12L τ84 = 157.057 × 10−12L τ64 = 156.969 × 10−12L τ07 = 156.995 × 10−12L | Tmax = 8.8 × 10−14L Tmin = 0.2 × 10−14L | No significant reduction in speckle contrast: L < 5.3 m Significant reduction in speckle contrast: 5.3 m < L < 234.1 m Speckle-free imaging: L > 234.1 m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Le, Z.; Guo, Y.; Liu, Z.; Xu, Q.; Dai, Y.; Deng, J.; Li, J.; Cai, D. Investigation on Speckle-Free Imaging at the Output of a Multimode Fiber under Various Mode Excitation Conditions. Photonics 2021, 8, 171. https://doi.org/10.3390/photonics8050171
Zhou J, Le Z, Guo Y, Liu Z, Xu Q, Dai Y, Deng J, Li J, Cai D. Investigation on Speckle-Free Imaging at the Output of a Multimode Fiber under Various Mode Excitation Conditions. Photonics. 2021; 8(5):171. https://doi.org/10.3390/photonics8050171
Chicago/Turabian StyleZhou, Jun, Zichun Le, Yanyu Guo, Zongshen Liu, Qiyong Xu, Yanxin Dai, Jiayu Deng, Jiapo Li, and Di Cai. 2021. "Investigation on Speckle-Free Imaging at the Output of a Multimode Fiber under Various Mode Excitation Conditions" Photonics 8, no. 5: 171. https://doi.org/10.3390/photonics8050171
APA StyleZhou, J., Le, Z., Guo, Y., Liu, Z., Xu, Q., Dai, Y., Deng, J., Li, J., & Cai, D. (2021). Investigation on Speckle-Free Imaging at the Output of a Multimode Fiber under Various Mode Excitation Conditions. Photonics, 8(5), 171. https://doi.org/10.3390/photonics8050171