Adaptive Gradient Estimation Stochastic Parallel Gradient Descent Algorithm for Laser Beam Cleanup
Abstract
:1. Introduction
2. Principle of the AGESPGD Algorithm
2.1. Model of Laser Beam Cleanup System
2.2. AGESPGD
Algorithm 1. The procedure of the Adaptive Gradient Estimation Stochastic Parallel Gradient Descent (AGESPGD) method |
Require: the stochastic merit function J (u1, u2, u3, …, un), the amplitude of disturbance , the gain rate , the certain value of , and the maximal number of iterations T. |
Ensure: The optimal parameters γ and du |
Initialize the indexes , J′ = 0, J″ = 0. |
Initialize the voltages u1, u2, u3, …, un. |
while or J ≥ Jc do |
Randomly generate the values of . |
Calculate the value of index . |
. |
. |
. |
end while |
3. Simulation
4. Experiment
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xu, J.; Zhao, S.; Hou, R.; Zhan, S.; Shi, L.; Wu, J.; Fang, S.; Li, Y. Laser jamming technique research based on combined fiber laser. Appl. Opt. 2009, 41, 486–494. [Google Scholar]
- Liu, S.; Farahmand, P.; Kovacevic, R. Optical monitoring of high power direct diode laser cladding. Opt. Laser Technol. 2014, 64, 363–376. [Google Scholar] [CrossRef]
- Webster, P.J.L.; Wright, L.G.; Ji, Y.; Galbraith, C.M.; Kinross, A.W.; Vlack, C.V.; Fraser, J.M. Automatic laser welding and milling with in situ inline coherent imaging. Opt. Lett. 2014, 39, 6217–6220. [Google Scholar] [CrossRef]
- Bindra, K.S.; Upadhyaya, B.N. Applications of High Power Solid State Lasers in Nuclear Power Programme. Proc. Natl. Acad. Sci. India Sect. A 2018, 88, 375–386. [Google Scholar] [CrossRef]
- Kawahito, Y.; Wang, H.; Katayama, S.; Sumimori, D. Ultra high power (100 kW) fiber laser welding of steel. Opt. Lett. 2018, 43, 4667–4670. [Google Scholar] [CrossRef]
- Pietrzak, A.; Zorn, M.; Meusel, J.; Huelsewede, R.; Sebastian, J. Development of highly efficient laser bars emitting at around 1060 nm for medical applications. In High-Power Diode Laser Technology XVI; International Society for Optics and Photonics: San Francisco, CA, USA, 2018. [Google Scholar]
- Zelenogorsky, V.; Solovyov, A.; Kozhevatov, I.; Kamenetsky, E.; Rudenchik, E.; Palashov, O.; Silin, D.; Khazanov, E.J.A.O. High-precision methods and devices for in situ measurements of thermally induced aberrations in optical elements. Appl. Opt. 2006, 45, 4092. [Google Scholar] [CrossRef] [PubMed]
- Antipov, O.L.; Anashkina, E.; Fedorova, K.A.J.Q.E. Electronic and thermal lensing in diode end-pumped Yb: YAG laser rods and discs. Quantum Electron. 2009, 39, 1131. [Google Scholar] [CrossRef]
- Slezak, O.; Lucianetti, A.; Divoky, M.; Sawicka, M.; Mocek, T. Optimization of Wavefront Distortions and Thermal-Stress Induced Birefringence in a Cryogenically-Cooled Multislab Laser Amplifier. IEEE J. Quantum Electron. 2013, 49, 960–966. [Google Scholar] [CrossRef]
- Martin, W.S.; Chernoch, J.P. Multiple Internal Reflection Face-Pumped Laser. U.S. Patent 3,633,126, 4 January 1972. [Google Scholar]
- Guofu, W. New Development of Laser Crystal Materials. J. Synth. Cryst. 1998, 27, 390–395. [Google Scholar]
- Redmond, S.; McNaught, S.; Zamel, J.; Iwaki, L.; Bammert, S.; Simpson, R.; Weiss, S.; Szot, J.; Flegal, B.; Lee, T. 15 kW near-diffraction-limited single-frequency Nd: YAG laser. In Conference on Lasers and Electro-Optics; Optical Society of America: Washington, DC, USA, 2007. [Google Scholar]
- Klimek, D.E.; Mandl, A. Nd: YAG Ceramic ThinZag (Registered Trademark) High-Power Laser Development; Textron Defense Systems: Wilmington, MA, USA, 2011. [Google Scholar]
- Peilin, L.; Liu, Q.; Fu, X.; Gong, M. Large-aperture end-pumped Nd: YAG thin-disk laser directly cooled by liquid. Chin. Opt. Lett. 2013, 11, 041408. [Google Scholar] [CrossRef] [Green Version]
- Lizhi, D.; Bing, L.B.X.; Ping, Y. Recent progress of adaptive beam cleanup of solid-state slab lasers in In-stitute of Optics and Electronics, Chinese Academy of Sciences. Opto-Electron. Eng. 2018, 45, 170539. [Google Scholar]
- Yading, G.; Qinjun, P.; Yong, B.; Zhongzheng, C.; Yang, L.; Lin, Z.; Chongfeng, S.; Lei, Y.; Baoshan, W.; Jian, X.; et al. 24.6 kW near diffraction limit quasi-continuous-wave Nd: YAG slab laser based on a stable–unstable hybrid cavity. Opt. Lett. 2020, 45, 1136–1139. [Google Scholar]
- Tyson, R.K. Principles of Adaptive Optics; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Muller, R.A.; Buffington, A. Real-time correction of atmospherically degraded telescope images through image sharpening. J. Opt. Soc. Am. 1974, 64, 1200–1210. [Google Scholar] [CrossRef] [Green Version]
- Murray, L.P.; Dainty, C.; McGaughey, D.R. Wavefront sensor-less adaptive optics-Image correction through sharpness maximization. In Frontiers in Optics; Optical Society of America: Washington, DC, USA, 2006. [Google Scholar]
- Ping, Y.; Yuan, L.; Mingwu, A.; Shijie, H.; Bing, X. A wavefront sensor-less adaptive optical system for a solid-state laser. Opt Lasers Eng. 2008, 46, 517–521. [Google Scholar]
- Liu, Y.; Ma, J.; Li, B.; Chu, J. Hill-climbing algorithm based on Zernike modes for wavefront sensorless adaptive optics. Opt. Eng. 2013, 52, 016601. [Google Scholar] [CrossRef]
- Poland, S.P.; Wright, A.J.; Girkin, J.M. Evaluation of fitness parameters used in an iterative approach to aberration correction in optical sectioning microscopy. Appl. Opt. 2008, 47, 731–736. [Google Scholar] [CrossRef]
- Planchon, T.A.; Amir, W.; Field, J.; Durfee, C.; Squier, J.; Rousseau, P.; Albert, O.; Mourou, G. Adaptive correction of a tightly focused, high-intensity laser beam by use of a third-harmonic signal generated at an interface. Opt. Lett. 2006, 31, 2214–2216. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ma, J.; Li, B.; Hu, Y.; Chu, J. Comparison of optimization algorithms for adaptive optics system without a wavefront sensor. In Proceedings of the 6th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Large Mirrors and Telescopes, Xiamen, China, 26–29 April October 2012; International Society for Optics and Photonics: Bellingham, WA, USA, 2012. [Google Scholar]
- Vorontsov, M.A.; Sivokon, V.P. Stochastic parallel-gradient-descent technique for high-resolution wave-front phase-distortion correction. J. Opt. Soc. Am. A 1998, 15, 2745–2758. [Google Scholar] [CrossRef]
- Piatrou, P.; Roggemann, M. Beaconless stochastic parallel gradient descent laser beam control: Numerical experiments. Appl. Opt. 2007, 46, 6831–6842. [Google Scholar] [CrossRef]
- Ping, Y.; Yu, N.; Xiang, L.; Bing, X.; Xinyang, L.; Lizhi, D.; Hu, Y.; Wenjing, L.; Wenhan, J.; Lei, L. Enhancement of the beam quality of non-uniform output slab laser amplifier with a 39-actuator rectangular piezoelectric deformable mirror. Opt. Express. 2010, 18, 7121–7130. [Google Scholar]
- Duchi, J.; Hazan, E.; Singer, Y. Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 2011, 12, 2121–2159. [Google Scholar]
- Ma, H.; Zhou, Q.; Xu, X.; Du, S.; Liu, Z. Full-field unsymmetrical beam shaping for decreasing and homogenizing the thermal deformation of optical element in a beam control system. Opt. Express 2011, 19, A1037–A1050. [Google Scholar] [CrossRef]
- Tieleman, T.; Hinton, G. Lecture 6.5-rmsprop, coursera: Neural networks for machine learning. Coursera 2012, 4, 26–31. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization; Computer Science: Kowloon Tong, Hong Kong, 2014. [Google Scholar]
- Qintao, H.; Liangli, Z.; Yao, M.; Shiei, Z.; Xi, Z.; Guozhong, Z. Adaptive stochastic parallel gradient descent approach for efficient fiber coupling. Opt. Express 2020, 28, 13141–13154. [Google Scholar]
- Huizhi, Y.; Xinyang, L.; Wenhan, J. Comparison of several stochastic parallel optimization control algorithms for adaptive optics system. High Power Laser Part. Beams 2008, 20, 11–16. [Google Scholar]
- Yang, G.; Liu, L.; Jiang, Z.; Guo, J.; Wang, T. Incoherent beam combining based on the momentum SPGD algorithm. Opt. Laser Technol. 2018, 101, 372–378. [Google Scholar] [CrossRef]
- Jabri, M.; Flower, B. Weight perturbation: An optimal architecture and learning technique for analog VLSI feedforward and recurrent multilayer networks. IEEE Trans. Neural Netw. 1992, 3, 154–157. [Google Scholar] [CrossRef] [PubMed]
- Alspector, J.; Meir, R.; Yuhas, B.; Jayakumar, A.; Lippe, D. A parallel gradient descent method for learning in analog VLSI neural networks. In Advances in Neural Information Processing Systems; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1993; pp. 836–844. [Google Scholar]
- Noll, R.J. Zernike polynomials and atmospheric turbulence. JOsA 1976, 66, 207–211. [Google Scholar] [CrossRef]
- Bo, C.; Huizhen, Y.; Jinbao, Z. Performances index and convergence speed of parallel gradient descent algorithm in adaptive optics of point source. Acta Opt. Sin. 2009, 29, 1143–1148. [Google Scholar]
- Xiang, W.; Yang, P.; Wang, S.; Xu, B.; Liu, H. Underwater image enhancement based on red channel weighted compensation and gamma correction model. Opto-Electron. Adv. 2018, 1, 180024. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, S.; Yang, P.; Lai, B.; Su, C.; Zhao, W.; Yang, K.; Jin, R.; Cheng, T.; Xu, B. Adaptive Gradient Estimation Stochastic Parallel Gradient Descent Algorithm for Laser Beam Cleanup. Photonics 2021, 8, 165. https://doi.org/10.3390/photonics8050165
Ma S, Yang P, Lai B, Su C, Zhao W, Yang K, Jin R, Cheng T, Xu B. Adaptive Gradient Estimation Stochastic Parallel Gradient Descent Algorithm for Laser Beam Cleanup. Photonics. 2021; 8(5):165. https://doi.org/10.3390/photonics8050165
Chicago/Turabian StyleMa, Shiqing, Ping Yang, Boheng Lai, Chunxuan Su, Wang Zhao, Kangjian Yang, Ruiyan Jin, Tao Cheng, and Bing Xu. 2021. "Adaptive Gradient Estimation Stochastic Parallel Gradient Descent Algorithm for Laser Beam Cleanup" Photonics 8, no. 5: 165. https://doi.org/10.3390/photonics8050165
APA StyleMa, S., Yang, P., Lai, B., Su, C., Zhao, W., Yang, K., Jin, R., Cheng, T., & Xu, B. (2021). Adaptive Gradient Estimation Stochastic Parallel Gradient Descent Algorithm for Laser Beam Cleanup. Photonics, 8(5), 165. https://doi.org/10.3390/photonics8050165