Low Noise Short Wavelength Infrared Avalanche Photodetector Using SB-Based Strained Layer Superlattice
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stillman, G.E. 21—Optoelectronics. In Reference Data for Engineers, 9th ed.; Middleton, W.M., van Valkenburg, M.E., Eds.; Newnes: Woburn, MA, USA, 2002; pp. 1–31. [Google Scholar]
- Mitra, P.; Beck, J.; Skokan, M.; Robinson, J.; Antoszewski, J.; Winchester, K.; Keating, A.; Nguyen, T.; Silva, K.; Musca, C. SWIR hyperspectral detection with integrated HgCdTe detector and tunable MEMS filter. In Proceedings of the Infrared Detectors and Focal Plane Arrays VIII. International Society for Optics and Photonics, San Diego, CA, USA, 15–16 August 2006; p. 62950G. [Google Scholar]
- Lord, S.D. A New Software Tool for Computing Earth’s Atmospheric Transmission of Near-and Far-Infrared Radiation; Ames Research Center: Moffett Field, CA, USA, 1992. [Google Scholar]
- Mun, S.C.L.T.; Tan, C.H.; Goh, Y.L.; Marshall, A.R.J.; David, J.P.R. Modeling of avalanche multiplication and excess noise factor in In0.52Al0.48As avalanche photodiodes using a simple Monte Carlo model. J. Appl. Phys. 2008, 104, 013114. [Google Scholar] [CrossRef]
- Beck, J.; Wan, C.; Kinch, M.; Robinson, J.; Mitra, P.; Scritchfield, R.; Ma, F.; Campbell, J. The HgCdTe electron avalanche photodiode. J. Electron. Mater. 2006, 35, 1166–1173. [Google Scholar] [CrossRef]
- Achouche, M.; Glastre, G.; Caillaud, C.; Lahrichi, M.; Chtioui, M.; Carpentier, D. InGaAs Communication Photodiodes: From Low- to High-Power-Level Designs. IEEE Photonics J. 2010, 2, 460–468. [Google Scholar] [CrossRef] [Green Version]
- Craig, A.P.; Jain, M.; Meriggi, L.; Cann, T.; Niblett, A.; Collins, X.; Marshall, A.R.J. Extended short-wave infrared linear and Geiger mode avalanche photodiodes, based on 6.1 Å materials. Appl. Phys. Lett. 2019, 114, 053501. [Google Scholar] [CrossRef] [Green Version]
- Rogalski, A.; Martyniuk, P.; Kopytko, M. Type-II superlattice photodetectors versus HgCdTe photodiodes. Prog. Quantum Electron. 2019, 68, 100228. [Google Scholar] [CrossRef]
- McIntyre, R.J. Multiplication noise in uniform avalanche diodes. IEEE Trans. Electron Devices 1966, ED-13, 164–168. [Google Scholar] [CrossRef]
- Emmons, R.B. Avalanche-Photodiode Frequency Response. J. Appl. Phys. 1967, 38, 3705–3714. [Google Scholar] [CrossRef]
- Brennan, K.F.; Wang, Y.; Teich, M.C.; Saleh, B.E.A.; Khorsandi, T. Theory of the temporal response of a simple multiquantum-well avalanche photodiode. IEEE Trans. Electron Devices 1988, 35, 1456–1467. [Google Scholar] [CrossRef]
- Teich, M.C.; Matsuo, K.; Saleh, B.E.A. Time and frequency response of the conventional avalanche photodiode. IEEE Trans. Electron Devices 1986, 33, 1511–1517. [Google Scholar] [CrossRef] [Green Version]
- Capasso, F.; Tsang, W.T.; Hutchinson, A.L.; Williams, G.F. Enhancement of electron impact ionization in a superlattice: A new avalanche photodiode with a large ionization rate ratio. Appl. Phys. Lett. 1982, 40, 38–40. [Google Scholar] [CrossRef]
- Sai-Halasz, G.A.; Tsu, R.; Esaki, L. A new semiconductor superlattice. Appl. Phys. Lett. 1977, 30, 651–653. [Google Scholar] [CrossRef]
- Razeghi, M.; Dehzangi, A.; Wu, D.; McClintock, R.; Zhang, Y.; Durlin, Q.; Li, J.; Meng, F. Antimonite-based gap-engineered type-II superlattice materials grown by MBE and MOCVD for the third generation of infrared imagers. In Proceedings of the Infrared Technology and Applications XLV. International Society for Optics and Photonics, Baltimore, MD, USA, 14–18 April 2019. [Google Scholar]
- Hoang, A.M.; Dehzangi, A.; Adhikary, S.; Razeghi, M. High performance bias-selectable three-color Short-wave/Mid-wave/Long-wave Infrared Photodetectors based on Type-II InAs/GaSb/AlSb superlattices. Sci. Rep. 2016, 6, 24144. [Google Scholar] [CrossRef] [Green Version]
- Woodson, M.E.; Ren, M.; Maddox, S.J.; Chen, Y.; Bank, S.R.; Campbell, J.C. Low-noise AlInAsSb avalanche photodiode. Appl. Phys. Lett. 2016, 108, 081102. [Google Scholar] [CrossRef]
- Li, J.; Dehzangi, A.; Razeghi, M. Performance analysis of infrared heterojunction phototransistors based on Type-II superlattices. Infrared Phys. Technol. 2021, 113, 103641. [Google Scholar] [CrossRef]
- Ripamonti, G.; Capasso, F.; Hutchinson, A.L.; Muehlner, D.J.; Walker, J.F.; Malik, R.J. Realization of a staircase photodiode: Towards a solid-state photomultiplier. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1990, 288, 99–103. [Google Scholar] [CrossRef]
- Li, J.; Dehzangi, A.; Brown, G.; Razeghi, M. Mid-wavelength infrared avalanche photodetector with AlAsSb/GaSb superlattice. Sci. Rep. 2021, 11, 7104. [Google Scholar] [CrossRef]
- Li, J.; Dehzangi, A.; Wu, D.; McClintock, R.; Razeghi, M. Type-II superlattice-based heterojunction phototransistors for high speed applications. Infrared Phys. Technol. 2020, 108, 103350. [Google Scholar] [CrossRef]
- Wei, Y.; Razeghi, M. Modeling of type-II InAs/GaSb superlattices using an empirical tight-binding method and interface engineering. Phys. Rev. B 2004, 69, 085316. [Google Scholar] [CrossRef]
- Haddadi, A.; Chevallier, R.; Dehzangi, A.; Razeghi, M. Extended short-wavelength infrared nBn photodetectors based on type-II InAs/AlSb/GaSb superlattices with an AlAsSb/GaSb superlattice barrier. Appl. Phys. Lett. 2017, 110, 101104. [Google Scholar] [CrossRef]
- Haddadi, A.; Dehzangi, A.; Chevallier, R.; Adhikary, S.; Razeghi, M. Bias–selectable nBn dual–band long–/very long–wavelength infrared photodetectors based on InAs/InAs1−xSbx/AlAs1−xSbx type–II superlattices. Sci. Rep. 2017, 7, 3379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oguzman, I.H.; Bellotti, E.; Brennan, K.F.; Kolnik, J.; Wang, R.P.; Ruden, P.P. Theory of hole initiated impact ionization in bulk zincblende and wurtzite GaN. J. Appl. Phys. 1997, 81, 7827–7834. [Google Scholar] [CrossRef]
- McClintock, R.; Pau, J.L.; Minder, K.; Bayram, C.; Kung, P.; Razeghi, M. Hole-initiated multiplication in back-illuminated GaN avalanche photodiodes. Appl. Phys. Lett. 2007, 90, 141112. [Google Scholar] [CrossRef] [Green Version]
- Dehzangi, A.; Li, J.; Gautam, L.; Razeghi, M. Avalanche Photodetector Based on InAs/InSb Superlattice. Quantum Rep. 2020, 2, 591–599. [Google Scholar] [CrossRef]
- Lee, C.; Logan, R.; Batdorf, R.; Kleimack, J.; Wiegmann, W. Ionization rates of holes and electrons in silicon. Phys. Rev. 1964, 134, A761. [Google Scholar] [CrossRef]
- Ng, B.K.; David, J.P.R.; Plimmer, S.A.; Rees, G.J.; Tozer, R.C.; Hopkinson, M.; Hill, G. Avalanche multiplication characteristics of Al/sub 0.8/Ga/sub 0.2/As diodes. IEEE Trans. Electron Devices 2001, 48, 2198–2204. [Google Scholar] [CrossRef]
- Collins, X.; Craig, A.P.; Roblin, T.; Marshall, A.R.J. Impact ionisation in Al0.9Ga0.1As0.08Sb0.92 for Sb-based avalanche photodiodes. Appl. Phys. Lett. 2018, 112, 021103. [Google Scholar] [CrossRef]
- Tan, C.H.; Xie, S.; Xie, J. Low Noise Avalanche Photodiodes Incorporating a 40 nm AlAsSb Avalanche Region. IEEE J. Quantum Electron. 2012, 48, 36–41. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dehzangi, A.; Li, J.; Razeghi, M. Low Noise Short Wavelength Infrared Avalanche Photodetector Using SB-Based Strained Layer Superlattice. Photonics 2021, 8, 148. https://doi.org/10.3390/photonics8050148
Dehzangi A, Li J, Razeghi M. Low Noise Short Wavelength Infrared Avalanche Photodetector Using SB-Based Strained Layer Superlattice. Photonics. 2021; 8(5):148. https://doi.org/10.3390/photonics8050148
Chicago/Turabian StyleDehzangi, Arash, Jiakai Li, and Manijeh Razeghi. 2021. "Low Noise Short Wavelength Infrared Avalanche Photodetector Using SB-Based Strained Layer Superlattice" Photonics 8, no. 5: 148. https://doi.org/10.3390/photonics8050148
APA StyleDehzangi, A., Li, J., & Razeghi, M. (2021). Low Noise Short Wavelength Infrared Avalanche Photodetector Using SB-Based Strained Layer Superlattice. Photonics, 8(5), 148. https://doi.org/10.3390/photonics8050148