Silicon-Based TM0-to-TM3 Mode-Order Converter Using On-Chip Shallowly Etched Slot Metasurface
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bogaerts, W.; Chrostowski, L. Silicon photonics circuit design: Methods, tools and challenges. Laser Photonics Rev. 2018, 12, 1700237. [Google Scholar] [CrossRef]
- Helkey, R.; Saleh, A.A.M.; Buckwalter, J.; Bowers, J.E. High-performance photonic integrated circuits on silicon. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 8300215. [Google Scholar] [CrossRef]
- Chen, X.; Milosevic, M.; Stankovic, S.; Reynolds, S.; Bucio, T.D.; Li, K.; Thomson, D.J.; Gardes, F.; Reed, G. The emergence of silicon photonics as a flexible technology platform. Proc. IEEE 2018, 106, 2101. [Google Scholar] [CrossRef]
- Saber, M.G.; Xu, L.; Sagor, R.H.; Wang, Y.; Plant, D.V. Integrated polarisation handling devices. IET Optoelectron. 2019, 14, 109–119. [Google Scholar] [CrossRef]
- Dong, P. Silicon photonic integrated circuits for wavelength-division multiplexing applications. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 6100609. [Google Scholar] [CrossRef]
- Luo, L.-W.; Ophir, N.; Chen, C.P.; Gabrielli, L.H.; Poitras, C.B.; Bergmen, K.; Lipson, M. WDM-compatible mode-division multiplexing on a silicon chip. Nat. Commun. 2014, 5, 3069. [Google Scholar] [CrossRef]
- Dai, D.; Li, C.; Wang, S.; Wu, H.; Shi, Y.; Wu, Z.; Gao, S.; Dai, T.; Yu, H.; Tsang, H.-K. 10-channel mode (de)multiplexer with dual polarizations. Laser Photonics Rev. 2018, 12, 1700109. [Google Scholar] [CrossRef]
- Tan, Y.; Wu, H.; Dai, D. Silicon-based hybrid (de)multiplexer for wavelength-/polarization-division-multiplexing. J. Lightwave Technol. 2018, 36, 2051–2058. [Google Scholar] [CrossRef]
- Han, X.; Xiao, H.; Liu, Z.; Zhao, T.; Jia, H.; Yang, J.; Eggleton, B.J.; Tian, Y. Reconfigurable on-chip mode exchange for mode-division multiplexing optical networks. J. Lightwave Technol. 2019, 37, 1008–1013. [Google Scholar] [CrossRef]
- Jia, H.; Chen, H.; Wang, T.; Xiao, H.; Ren, G.; Mitchell, A.; Yang, J.; Tian, Y. Multi-channel parallel silicon mode-order converter for multimode on-chip optical switching. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 8302106. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; He, Y.; Zhu, Q.; Sun, L.; Su, Y. Compact silicon waveguide mode converter employing dielectric metasurface structure. Adv. Opt. Mater. 2018, 7, 1801191. [Google Scholar] [CrossRef]
- Cheng, Z.; Wang, J.; Yang, Z.; Zhu, L.; Yang, Y.; Huang, Y.; Ren, X. Sub-wavelength grating assisted mode order converter on the SOI substrate. Opt. Express 2019, 27, 34434–34441. [Google Scholar] [CrossRef]
- Greenberg, Y.; Karabchevsky, A. Spatial eigenmodes conversion with metasurfaces engraved in silicon ridge waveguides. Appl. Opt. 2019, 58, F21–F25. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, X.; Zhang, Y.; Xiang, J.; Wang, K.; Wang, H.; Su, Y. Ultra-compact silicon mode-order converters based on dielectric slots. Opt. Lett. 2020, 45, 3797–3800. [Google Scholar] [CrossRef]
- Abu-elmaaty, B.E.; Sayed, M.S.; Pokharel, R.K.; Shalaby, H.M.H. General silicon-on-insulator higher-order mode converter based on substrip dielectric waveguides. Appl. Opt. 2019, 58, 1763–1771. [Google Scholar] [CrossRef]
- Liu, D.; Tan, Y.; Khoram, E.; Yu, Z. Training deep neural networks for the inverse design of nanophotonic structures. ACS Photonics 2018, 5, 1365. [Google Scholar] [CrossRef]
- Ma, W.; Liu, Z.; Kudyshev, Z.A.; Boltasseva, A.; Cai, W.; Liu, Y. Deep learning for the design of photonic structures. Nat. Photonics 2021, 15, 77–90. [Google Scholar] [CrossRef]
- Frellsen, L.F.; Ding, Y.; Sigmund, O.; Frandsen, L.H. Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides. Opt. Express 2016, 24, 16866–16873. [Google Scholar] [CrossRef] [PubMed]
- Ahmmed, K.T.; Chan, H.P.; Li, B. Broadband high-order mode pass filter based on mode conversion. Opt. Lett. 2017, 42, 3686–3689. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Yu, Y.; Chen, G.; Zhang, X. Integrated switchable mode exchange for reconfigurable mode-multiplexing optical networks. Opt. Lett. 2016, 41, 3257–3260. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; Shi, Y.; Li, J.; Dai, P.; Zhao, Y.; Li, L.; Lu, J.; Chen, X. On-chip mode converter based on two cascaded Bragg gratings. Opt. Express 2019, 27, 1941–1957. [Google Scholar] [CrossRef]
- Okayama, H.; Onawa, Y.; Takahashi, H.; Shimura, D.; Yaegashi, H.; Sasaki, H. Polarization insensitive silicon waveguide wavelength filter using polarization rotator and mode conversion Bragg grating with resonator cavity. Jpn. J. Appl. Phys. 2020, 59, 128002. [Google Scholar] [CrossRef]
- Chen, D.; Xiao, X.; Wang, L.; Yu, Y.; Liu, W.; Yang, Q. Low-loss and fabrication tolerant silicon mode-order converters based on novel compact tapers. Opt. Express 2015, 23, 11152–11159. [Google Scholar] [CrossRef] [PubMed]
- Gallacher, K.; Millar, R.W.; Griskeviciute, U.; Sinclair, M.; Sorel, M.; Baldassarre, L.; Ortolani, M.; Soref, R.; Paul, D.J. Ultra-broadband mid-infrared Ge-on-Si waveguide polarization rotator. APL Photonics 2020, 5, 026102. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, C.; Hu, X.; Dong, Y.; Zhang, B.; Ni, Y. On-chip silicon shallowly etched TM0-to-TM1 mode-order converter with high conversion efficiency and low modal crosstalk. J. Opt. Soc. Am. B 2020, 37, 1290–1297. [Google Scholar] [CrossRef]
- Li, C.; Liu, D.; Dai, D. Multimode silicon photonics. Nanophotonics 2019, 8, 227. [Google Scholar] [CrossRef]
- Zhang, G.; Mojaver, H.R.; Das, A. Liboiron-Ladouceur, Mode insensitive switch for on-chip interconnect mode division multiplexing systems. Opt. Lett. 2020, 45, 811–814. [Google Scholar] [CrossRef]
- Cheben, P.; Halir, R.; Schmid, J.H.; Atwater, H.A.; Smith, D.R. Subwavelength integrated photonics. Nature 2018, 560, 565–572. [Google Scholar] [CrossRef]
- Halir, R.; Ortega-Monux, A.; Benedikovic, D.; Mashanovich, G.Z.; Wanguemert-Perez, G.J.; Schmid, J.H.; Molina-Fernandez, J.; Cheben, P. Subwavelength-grating metamaterial structures for silicon photonic devices. Proc. IEEE 2018, 106, 2144–2157. [Google Scholar] [CrossRef]
- Soldano, L.B.; Pennings, E.C.M. Optical multi-mode interference devices based on self-imaging: Principles and applications. J. Lightwave Technol. 1995, 13, 615–627. [Google Scholar] [CrossRef]
- Sullivan, D.M. Electromagnetic Simulation Using the FDTD Method; IEEE Press: Piscataway Township, NJ, USA, 2000. [Google Scholar]
- Available online: https://www.lumerical.com/products/fdtd/ (accessed on 8 January 2021).
- Rahim, A.; Spuesens, T.; Baets, R.; Bogaerts, W. Open-access silicon photonics: Current status and emerging initiatives. Proc. IEEE 2018, 106, 2313–2330. [Google Scholar] [CrossRef]
- Komljenovic, T.; Huang, D.; Pintus, P.; Tran, M.A.; Davenport, M.L.; Bowers, J. Photonic integrated circuits using heterogeneous integration on silicon. Proc. IEEE 2018, 106, 2246–2257. [Google Scholar] [CrossRef]
- Seo, E.; Choi, B.K.; Kim, O. Determination of proximity effect parameters and the shape bias parameter in electron beam lithography. Microelectron. Eng. 2020, 53, 305–308. [Google Scholar] [CrossRef]
- Zhu, C.; Xu, Y.; Dong, Y.; Zhang, B.; Ni, Y. A compact silicon-based TM0-to-TM2 mode-order converter using shallowly-etched slots. J. Opt. 2020, 22, 015802. [Google Scholar] [CrossRef]
- Liu, L. Densely packed waveguide array (DPWA) on a silicon chip for mode division multiplexing. Opt. Express 2015, 23, 12135. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, C.; Xu, Y.; Kang, Z.; Hu, X.; Dong, Y.; Zhang, B.; Ni, Y.; Xu, P. Silicon-Based TM0-to-TM3 Mode-Order Converter Using On-Chip Shallowly Etched Slot Metasurface. Photonics 2021, 8, 95. https://doi.org/10.3390/photonics8040095
Zhu C, Xu Y, Kang Z, Hu X, Dong Y, Zhang B, Ni Y, Xu P. Silicon-Based TM0-to-TM3 Mode-Order Converter Using On-Chip Shallowly Etched Slot Metasurface. Photonics. 2021; 8(4):95. https://doi.org/10.3390/photonics8040095
Chicago/Turabian StyleZhu, Chenxi, Yin Xu, Zhe Kang, Xin Hu, Yue Dong, Bo Zhang, Yi Ni, and Peipeng Xu. 2021. "Silicon-Based TM0-to-TM3 Mode-Order Converter Using On-Chip Shallowly Etched Slot Metasurface" Photonics 8, no. 4: 95. https://doi.org/10.3390/photonics8040095
APA StyleZhu, C., Xu, Y., Kang, Z., Hu, X., Dong, Y., Zhang, B., Ni, Y., & Xu, P. (2021). Silicon-Based TM0-to-TM3 Mode-Order Converter Using On-Chip Shallowly Etched Slot Metasurface. Photonics, 8(4), 95. https://doi.org/10.3390/photonics8040095