Size-Dependent Quantum Efficiency of Flip-Chip Light-Emitting Diodes at High Current Injection Conditions
Abstract
:1. Introduction
2. Experiment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wierer, J.J.; David, A.; Megens, M.M. III-nitride photonic-crystal light-emitting diodes with high extraction efficiency. Nat. Photonics 2009, 3, 163–169. [Google Scholar] [CrossRef]
- Wu, H.; Li, H.; Kuo, S.Y.; Chen, B.Y.; Lu, T.C.; Huang, H. High Output Power GaN-Based Green Resonant-Cavity Light-Emitting Diodes With Trapezoidal Quantum Wells. IEEE Trans. Electron Devices 2020, 67, 3650–3654. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, H.; Zheng, H.; Wei, T.; Yang, H.; Li, J.; Yi, X.; Song, X.; Wang, G.; Li, J. Light extraction efficiency improvement by multiple laser stealth dicing in InGaN-based blue light-emitting diodes. Opt. Express 2012, 20, 6808. [Google Scholar] [CrossRef]
- Day, J.; Li, J.; Lie, D.Y.C.; Bradford, C.; Lin, J.Y.; Jiang, H.X. III-Nitride full-scale high-resolution microdisplays. Appl. Phys. Lett. 2011, 99, 42. [Google Scholar] [CrossRef]
- Wu, T.; Chin-Wei, S.; Yue, L.; Chun-Fu, L.; Liang, S.; Lu, Y.; Huang, S.W.; Guo, W.; Hao-Chung, K.; Zhong, C. Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology. Appl. Sci. 2018, 8, 1557. [Google Scholar] [CrossRef] [Green Version]
- Olivier, F.; Tirano, S.; Dupré, L.; Aventurier, B.; Largeron, C.; Templier, F. Influence of size-reduction on the performances of GaN-based micro-LEDs for display application. J. Lumin. 2016, 191, 112–116. [Google Scholar] [CrossRef]
- Wang, Z.; Shan, X.; Cui, X.; Tian, P. Characteristics and techniques of GaN-based micro-LEDs for application in next-generation display. J. Semicon. 2020, 41, 81–86. [Google Scholar] [CrossRef]
- McKendry, J.J.D.; Green, R.P.; Kelly, A.E.; Gong, Z.; Guilhabert, B.; Massoubre, D.; Gu, E.; Dawson, M.D. High-Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array. IEEE Photonics Technol. Lett. 2010, 22, 1346–1348. [Google Scholar] [CrossRef]
- Konthoujam, J.S.; Huang, Y.M.; Ahmed, T.; Singh, K.J. Micro-LED as a Promising Candidate for High-Speed Visible Light Communication. Appl. Sci. 2020, 10, 7384. [Google Scholar]
- Huang, Y.; Guo, Z.; Wang, X.; Li, H.; Xiang, D. GaN-based high response frequency and high optical power matrix micro-LED for visible light communication. IEEE Electron Device Lett. 2020, 41, 1536–1539. [Google Scholar] [CrossRef]
- Narukawa, Y.; Ichikawa, M.; Sanga, D.; Sano, M.; Mukai, T. White light emitting diodes with super-high luminous efficacy. J. Phys. D Appl. Phys. 2010, 43, 354002. [Google Scholar] [CrossRef]
- Li, P.P.; Zhao, Y.B.; Li, H.J.; Che, J.M.; Wang, G.H. Very high external quantum efficiency and wall-plug efficiency 527 nm InGaN green LEDs by MOCVD. Opt. Express 2018, 26, 33108. [Google Scholar] [CrossRef] [PubMed]
- Polkovnikov, A.S.; Zegrya, G.G. Auger Recombination in Semiconductor Quantum Wells. Phys. Rev. B 1998, 58, 247–250. [Google Scholar] [CrossRef] [Green Version]
- Delaney, K.T.; Rinke, P.; Walle, C.G.V.D. Auger recombination rates in nitrides from first principles. Appl. Phys. Lett 2009, 94, 141101. [Google Scholar] [CrossRef] [Green Version]
- Kioupakis, E.; Yan, Q.; van de Walle, C.G. Interplay of polarization fields and Auger recombination in the efficiency droop of nitride light-emitting diodes. Appl. Phys. Lett. 2012, 101, 180. [Google Scholar] [CrossRef] [Green Version]
- David, A.; Grundmann, M.J. Influence of polarization fields on carrier lifetime and recombination rates in InGaN-based light-emitting diodes. Appl. Phys. Lett. 2010, 97, 033501. [Google Scholar] [CrossRef] [Green Version]
- Ryu, H.Y.; Shin, D.S.; Shim, J.-L. Analysis of efficiency droop in nitride light-emitting diodes by the reduced effective volume of InGaN active material. Appl. Phys. Lett. 2012, 100, 2217. [Google Scholar] [CrossRef]
- Malyutenko, V.K.; Bolgov, S.S.; Podoltsev, A.D. Current crowding effect on the ideality factor and efficiency droop in blue lateral InGaN/GaN light emitting diodes. Appl. Phys. Lett. 2010, 97, 180. [Google Scholar] [CrossRef]
- Narukawa, Y.; Kawakami, Y.; Fujita, S.; Fujita, S.; Nakamura, S. Recombination dynamics of localized excitons in In 0.20 Ga 0.80 N- In 0.05 Ga 0.95 N multiple quantum wells. Phys. Rev. B 1997, 55. [Google Scholar] [CrossRef]
- Li, H.; Li, P.; Kang, J.; Zhi, L.; Zhang, Y.; Meng, L.; Li, Z.; Jing, L.; Yi, X.; Wang, G. Analysis Model for Efficiency Droop of InGaN Light-Emitting Diodes Based on Reduced Effective Volume of Active Region by Carrier Localization. Appl. Phys. Express 2013, 6, 092101. [Google Scholar] [CrossRef]
- Hangleiter, A.; Hitzel, F.; Netzel, C.; Fuhrmann, D.; Rossow, U.; Ade, G.; Hinze, P. Suppression of nonradiative recombination by V-shaped pits in GaInN/GaN quantum wells produces a large increase in the light emission efficiency. Phys. Rev. Lett. 2005, 95, 127402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, J.; Ni, X.; Qian, F.; Shimada, R.; OEzguer, U.; Morkoc, H. On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p-doped quantum well barriers. Appl. Phys. Lett. 2008, 93, 121107. [Google Scholar] [CrossRef]
- Ni, X.; Li, X.; Lee, J.; Liu, S.; Avrutin, V.; Oezguer, U.; Morkoc, H.; Matulionis, A.; Paskova, T.; Mulholland, G. InGaN staircase electron injector for reduction of electron overflow in InGaN light emitting diodes. Appl. Phys. Lett. 2010, 97, 160. [Google Scholar] [CrossRef] [Green Version]
- RoMer, F.; Witzigmann, B. Effect of Auger recombination and leakage on the droop in InGaN/GaN quantum well LEDs. Opt. Express 2014, 22 (Suppl. 6), A1440. [Google Scholar] [CrossRef] [Green Version]
- Li, C.-K.; Wu, Y.-R. Study on the Current Spreading Effect and Light Extraction Enhancement of Vertical GaN/InGaN LEDs. IEEE Trans. Electron Devices 2012, 59, 400–407. [Google Scholar] [CrossRef]
- Madhusoodhanan, S.; Sabbar, A.; Atcitty, S.; Kaplar, R.; Chen, Z. High-Temperature Analysis of GaN-based Blue LEDs for Future Power Electronic Applications. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 4186–4190. [Google Scholar] [CrossRef]
- Xu, J.; Schubert, M.F.; Noemaun, A.N.; Zhu, D.; Kim, J.K.; Schubert, E.F.; Min, H.K.; Chung, H.J.; Yoon, S.; Sone, C. Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes. Appl. Phys. Lett. 2009, 94, 183507. [Google Scholar] [CrossRef] [Green Version]
- Kuo, Y.-K.; Wang, T.-H.; Chang, J.-Y. Advantages of blue InGaN light-emitting diodes with InGaN-AlGaN-InGaN barriers. Appl. Phys. Lett. 2012, 100, 31112. [Google Scholar] [CrossRef] [Green Version]
- Lu, T. Advantages of GaN based light-emitting diodes with a p-InGaN hole reservoir layer. Appl. Phys. Lett. 2012, 100, 183507. [Google Scholar] [CrossRef]
- Wu, F.L.; Ou, S.L.; Kao, Y.C.; Chen, C.L.; Tseng, M.C.; Lu, F.C.; Lin, M.T.; Horng, R.H. Thin-film vertical-type AlGaInP LEDs fabricated by epitaxial lift-off process via the patterned design of Cu substrate. Opt. Express 2015, 23, 18156–18165. [Google Scholar] [CrossRef]
- Liu, W.J.; Hu, X.L.; Zhang, J.Y.; Weng, G.E.; Lv, X.Q.; Huang, H.J.; Chen, M.; Cai, X.M.; Ying, L.Y.; Zhang, B.P. Low-temperature bonding technique for fabrication of high-power GaN-based blue vertical light-emitting diodes. Opt. Mater. 2012, 34, 1327–1329. [Google Scholar] [CrossRef]
- Wang, L.; Guo, E.; Liu, Z.; Yi, X.; Wang, G. High-performance nitride vertical light-emitting diodes based on Cu electroplating technical route. IEEE Trans. Electron Devices 2016, 63, 892–902. [Google Scholar] [CrossRef]
- Kivisaari, P.; Kim, I.; Suihkonen, S.; Oksanen, J. Elimination of Lateral Resistance and Current Crowding in Large-Area LEDs by Composition Grading and Diffusion-Driven Charge Transport. Adv. Electron. Mater. 2017, 3. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Q.; Meng, F.Y.; Sung, H.K.; Yao, Z.; Sun, R.Y.; Wang, C. Enhanced performance of large-area vertical light-emitting diodes treated by laser irradiation. J. Nanosci. Nanotechnol. 2017, 12, 369–372. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, H.; Guo, E.; Cheng, Y.; Ma, J.; Wang, L.; Liu, Z.; Yi, X.; Wang, G.; Li, J. Effects of light extraction efficiency to the efficiency droop of InGaN-based light-emitting diodes. J. Appl. Phys. 2013, 113, 1274. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Z.-H.; Wang, N. Current crowding phenomenon: Theoretical and direct correlation with the efficiency droop of light emitting diodes by a modified ABC model. IEEE J. Quantum Electron. 2015, 51, 3200109. [Google Scholar]
- Lin, J.Y.; Jiang, H.X. Development of microLED. Appl. Phys. Lett. 2020, 116, 100502. [Google Scholar] [CrossRef]
- Li, C.C.; Zhan, J.L.; Chen, Z.Z.; Jiao, F.; Shen, B. Operating behavior of micro-LEDs on a GaN substrate at ultrahigh injection current densities. Opt. Express 2019, 27, A1146. [Google Scholar] [CrossRef]
- Tian, P.; Mckendry, J.J.D.; Gong, Z.; Guilhabert, B.; Watson, I.M.; Gu, E.; Chen, Z.; Zhang, G.; Dawson, M.D. Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes. Appl. Phys. Lett. 2012, 101, 2217. [Google Scholar] [CrossRef]
- Cheung, W.S.; Cheung, Y.F.; Chen, H.T.; Hui, R.S.Y.; Waffenschmidt, E.; Choi, H.W. InGaN light-emitting diode stripes with reduced luminous exitance. Opt. Express 2015, 23, 15021–15028. [Google Scholar] [CrossRef]
- Guo, X.; Schubert, E.F. Current crowding and optical saturation effects in GaInN/GaN light-emitting diodes grown on insulating substrates. Appl. Phys. Lett. 2001, 78, 3337–3339. [Google Scholar] [CrossRef]
- Park, Y.; Li, K.H.; Fu, W.Y.; Cheung, Y.F.; Choi, H.W. Packaging of InGaN stripe-shaped light-emitting diodes. Appl. Opt. 2018, 57, 2452–2458. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Jin, S.; Chen, Y.; Mckendry, J.; Massoubre, D.; Watson, I.M.; Gu, E.; Dawson, M.D. Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes. J. Appl. Phys. 2010, 107, 1086. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Li, Y.; Li, Z.; Miao, Z.; Liang, M.; Zhang, Y.; Yi, X.; Wang, G.; Li, J. Size-Dependent Quantum Efficiency of Flip-Chip Light-Emitting Diodes at High Current Injection Conditions. Photonics 2021, 8, 88. https://doi.org/10.3390/photonics8040088
Zhang X, Li Y, Li Z, Miao Z, Liang M, Zhang Y, Yi X, Wang G, Li J. Size-Dependent Quantum Efficiency of Flip-Chip Light-Emitting Diodes at High Current Injection Conditions. Photonics. 2021; 8(4):88. https://doi.org/10.3390/photonics8040088
Chicago/Turabian StyleZhang, Xingfei, Yan Li, Zhicong Li, Zhenlin Miao, Meng Liang, Yiyun Zhang, Xiaoyan Yi, Guohong Wang, and Jinmin Li. 2021. "Size-Dependent Quantum Efficiency of Flip-Chip Light-Emitting Diodes at High Current Injection Conditions" Photonics 8, no. 4: 88. https://doi.org/10.3390/photonics8040088
APA StyleZhang, X., Li, Y., Li, Z., Miao, Z., Liang, M., Zhang, Y., Yi, X., Wang, G., & Li, J. (2021). Size-Dependent Quantum Efficiency of Flip-Chip Light-Emitting Diodes at High Current Injection Conditions. Photonics, 8(4), 88. https://doi.org/10.3390/photonics8040088