Power Scaling of CW Crystalline OPOs and Raman Lasers
Abstract
:1. Introduction
2. OPOs versus Raman Lasers
2.1. Amplification Process
2.2. Cavity Configurations
3. Performance of CW OPOs and Raman Lasers
3.1. Output Power of CW OPOs
3.2. Output Power of CW Raman Lasers
3.3. Brightness Beam Enhancement of OPOs and Raman Lasers
3.4. Wavelength Tuning of OPOs and Raman Lasers
4. Material Properties of OPO and Raman Crystals
5. Discussion: Power and Brightness Scalability of DRLs
6. Conclusions and Future Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Geskus, D.; Jakutis-Neto, J.; Pask, H.M.; Wetter, N.U. Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XIV; Ten Deep Blue to Cyan Emission Lines from an Intracavity Frequency Converted Raman Laser; International Society for Optics and Photonics: Bellingham, WA, USA, 2015. [Google Scholar]
- Mildren, R.P.; Convery, M.; Pask, H.M.; Piper, J.A.; Mckay, T. Efficient, all-solid-state, Raman laser in the yellow, orange and red. Opt. Express 2004, 12, 785–790. [Google Scholar] [CrossRef]
- Hollberg, L. Precision Spectroscopy, Diode Lasers, and Optical Frequency Measurement; CW Dye Lasers; Diane Publishing Co.: Collingdale, PA, USA, 2000; p. 105. [Google Scholar]
- Miao, Z.W.; Yu, H.J.; Zhang, J.Y.; Zou, S.Z.; Zhao, P.F.; Lou, B.J.; Lin, X.C. Watt-level CW Ti: Sapphire oscillator directly pumped with green laser diodes module. IEEE Photonics Technol. Lett. 2020, 32, 247–250. [Google Scholar] [CrossRef]
- Liu, H.; Sun, S.; Zheng, L.; Wang, G.; Tian, W.; Zhang, D.; Han, H.; Zhu, J.; Wei, Z. Review of laser-diode pumped Ti: Sapphire laser. Microw. Opt. Technol. Lett. 2021, 63, 2135–2144. [Google Scholar] [CrossRef]
- M Squared SolsTiS. Available online: https://www.m2lasers.com/solstis.html (accessed on 24 October 2021).
- Photonics Solutions Ltd. Available online: https://www.photonicsolutions.co.uk/upfiles/PrismSeriesIonLasersDatasheetLG11Jun18.pdf (accessed on 24 October 2021).
- Anliker, P.; Luthi, H.; Seelig, W.; Steinger, J.; Weber, H.; Leutwyler, S.; Schumacher, E.; Woste, L. 33-W CW dye laser. IEEE J. Quantum Electron. 1977, 13, 547–548. [Google Scholar] [CrossRef]
- Coherent INNOVA Series. Available online: https://www.coherent.com/lasers/ion/innova-series (accessed on 24 October 2021).
- Gottwald, T.; Kuhn, V.; Schad, S.S.; Stolzenburg, C.; Killi, A. Technologies for Optical Countermeasures X; and High-Power Lasers 2013: Technology and Systems; Recent Developments in High Power Thin Disk Lasers at TRUMPF Laser; International Society for Optics and Photonics: Bellingham, WA, USA, 2013. [Google Scholar]
- Stewen, C.; Contag, K.; Larionov, M.; Giesen, A.; Hugel, H. A 1-kW CW thin disc laser. IEEE J. Sel. Top. Quantum Electron. 2000, 6, 650–657. [Google Scholar] [CrossRef]
- Wallace, J. High-Power Fiber Lasers: Kilowatt-Level Fiber Lasers Mature; Endeavor Business Media: Nashua, NH, USA, 2016. [Google Scholar]
- Papastathopoulos, E.; Baumann, F.; Bocksrocker, O.; Gottwald, T.; Killi, A.; Metzger, B.; Schad, S.S.; Speker, N.; Ryba, T.; Zaske, S. Solid State Lasers XXX: Technology and Devices; High-Power High-brightness Disk Lasers for Advanced Applications; International Society for Optics and Photonics: Bellingham, WA, USA, 2021. [Google Scholar]
- Jackson, S.D. Towards high-power mid-infrared emission from a fibre laser. Nat. Photonics 2012, 6, 423–431. [Google Scholar] [CrossRef]
- Meleshkevich, M.; Platonov, N.; Gapontsev, D.; Drozhzhin, A.; Sergeev, V.; Gapontsev, V. The European Conference on Lasers and Electro-Optics; 415 W Single-Mode CW Thulium Fiber Laser in All-Fiber Format; Optical Society of America: Washington, DC, USA, 2007. [Google Scholar]
- Lin, H.; Feng, Y.; Barua, P.; Sahu, J.K.; Nilsson, J. Advanced Solid State Lasers; 405 W Erbium-Doped Large-Core Fiber Laser; Optical Society of America: Washington, DC, USA, 2017. [Google Scholar]
- Zhang, J.; Schulze, F.; Mak, K.F.; Pervak, V.; Bauer, D.; Sutter, D.; Pronin, O. High-power, high-efficiency Tm: YAG and Ho: YAG thin-disk lasers. Laser Photonics Rev. 2018, 12, 1700273. [Google Scholar] [CrossRef]
- Ye, Y.; Yang, B.; Wang, P.; Zeng, L.; Xi, X.; Shi, C.; Zhang, H.; Wang, X.; Zhou, P.; Xu, X. Industrial 6 kW high-stability single-stage all-fiber laser oscillator based on conventional large mode area ytterbium-doped fiber. Laser Phys. 2021, 31, 035104. [Google Scholar] [CrossRef]
- IPG Photonics Corporation. Available online: https://www.ipgphotonics.com/en/products/lasers/high-power-cw-fiber-lasers#[1-micron] (accessed on 24 October 2021).
- Hoffman, A.; Gmachl, C. Extending opportunities. Nat. Photonics 2012, 6, 407. [Google Scholar]
- Wang, F.; Slivken, S.; Wu, D.H.; Lu, Q.Y.; Razeghi, M. Continuous wave quantum cascade lasers with 5.6 W output power at room temperature and 41% wall-plug efficiency in cryogenic operation. AIP Adv. 2020, 10, 055120. [Google Scholar] [CrossRef]
- Tabata, N.; Nagai, H.; Yoshida, H.; Hishii, M.; Tanaka, M.; Myoi, Y.; Akiba, T. Conference on Lasers and Electro-Optics; Industrial 20-kW cw CO2 SAGE Laser; Optical Society of America: Washington, DC, USA, 1984. [Google Scholar]
- Mid-Infrared Laser Sources. Available online: https://www.rp-photonics.com/mid_infrared_laser_sources.html (accessed on 12 September 2021).
- Hudson, D.D. Short pulse generation in mid-IR fiber lasers. Opt. Fiber Technol. 2014, 20, 631–641. [Google Scholar] [CrossRef]
- Yang, X.; Kitzler, O.; Spence, D.J.; Bai, Z.; Feng, Y.; Mildren, R.P. Diamond sodium guide star laser. Opt. Lett. 2020, 45, 1898–1901. [Google Scholar] [CrossRef]
- de Lima Ribeiro, A.; Pask, H. Remote Sensing of Natural Waters Using a Multichannel, Lidar-Compatible Raman Spectrometer and Blue Excitation. Front. Mar. Sci. 2020, 7, 43. [Google Scholar] [CrossRef]
- Yellow and Orange Lasers. Available online: https://www.rp-photonics.com/yellow_and_orange_lasers.html (accessed on 12 March 2021).
- Lux, O.; Sarang, S.; Kitzler, O.; Spence, D.J.; Mildren, R.P. Intrinsically stable high-power single longitudinal mode laser using spatial hole burning free gain. Optica 2016, 3, 876–881. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Mohsin, M.; Ali, S.M.Z. Survey and technological analysis of laser and its defense applications. Def. Technol. 2020, 17, 583–592. [Google Scholar] [CrossRef]
- Paschotta, R. Laser Applications in the Encyclopedia of Laser Physics and Technology. Available online: https://www.rp-photonics.com/encyclopedia_cite.html?article=laser%20applications (accessed on 24 October 2021).
- Cousins, A.K. Temperature and thermal stress scaling in finite-length end-pumped laser rods. IEEE J. Quantum Electron. 1992, 28, 1057–1069. [Google Scholar] [CrossRef]
- Tidwell, S.C.; Seamans, J.F.; Bowers, M.S.; Cousins, A.K. Scaling CW diode-end-pumped Nd: YAG lasers to high average powers. IEEE J. Quantum Electron. 1992, 28, 997–1009. [Google Scholar] [CrossRef]
- Shukla, P.; Lawrence, J.; Zhang, Y. Understanding laser beam brightness: A review and new prospective in material processing. Opt. Laser Technol. 2015, 75, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Franken, E.P.; Hill, A.E.; Peters, C.W.; Weinreich, G. Generation of optical harmonics. Phys. Rev. Lett. 1961, 7, 118. [Google Scholar] [CrossRef] [Green Version]
- Bass, M.; Franken, P.A.; Hill, A.E.; Peters, C.W.; Weinreich, G. Optical mixing. Phys. Rev. Lett. 1962, 8, 18. [Google Scholar] [CrossRef]
- Guha, S.; Falk, J. The effects of focusing in the three-frequency parametric upconverter. J. Appl. Phys. 1980, 51, 50–60. [Google Scholar] [CrossRef]
- Giordmaine, J.A.; Miller, R.C. Tunable coherent parametric oscillation in LiNbO3 at optical frequencies. Phys. Rev. Lett. 1965, 14, 973. [Google Scholar] [CrossRef]
- Ammann, E.; Decker, C. 0.9-W Raman oscillator. J. Appl. Phys. 1977, 48, 1973–1975. [Google Scholar] [CrossRef]
- Liao, Z.M.; Payne, S.A.; Dawson, W.J.; Drobshoff, A.D.; Ebbers, C.A.; Pennington, D.M.; Jovanovic, I.; Taylor, L.R. Nonlinear Optics: Materials, Fundamentals and Applications; Thermally Induced Dephasing in Periodically Poled KTiOPO4 Nonlinear Crystals; Optical Society of America: Washington, DC, USA, 2004. [Google Scholar]
- Tovstonog, S.V.; Kurimura, S.; Suzuki, I.; Takeno, K.; Moriwaki, S.; Ohmae, N.; Mio, N.; Katagai, T. Thermal effects in high-power CW second harmonic generation in Mg-doped stoichiometric lithium tantalate. Opt. Express 2008, 16, 11294–11299. [Google Scholar] [CrossRef]
- Kumar, S.C.; Samanta, G.K.; Ebrahim-Zadeh, M. High-power, single-frequency, continuous-wave second-harmonic-generation of ytterbium fiber laser in PPKTP and MgO: sPPLT. Opt. Express 2009, 17, 13711–13726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Černý, P.; Jelínková, H.; Zverev, P.G.; Basiev, T.T. Solid state lasers with Raman frequency conversion. Prog. Quantum Electron. 2004, 28, 113–143. [Google Scholar] [CrossRef]
- Strößner, U.; Meyn, J.P.; Wallenstein, R.; Urenski, P.; Arie, A.; Rosenman, G.; Mlynek, J.; Schiller, S.; Peters, A. Single-frequency continuous-wave optical parametric oscillator system with an ultrawide tuning range of 550 to 2830 nm. JOSA B 2002, 19, 1419–1424. [Google Scholar] [CrossRef]
- Colville, F.G.; Henderson, A.J.; Padgett, M.J.; Zhang, J.; Dunn, M.H. Continuous-wave parametric oscillation in lithium triborate. Opt. Lett. 1993, 18, 205–207. [Google Scholar] [CrossRef]
- Batchko, R.G.; Weise, D.; Plettner, T.; Miller, G.D.; Fejer, M.M.; Byer, R.L. CLEO’97. Summaries of Papers Presented at the Conference on Lasers and Electro-Optics; Continuous-Wave 532-nm-Pumped Singly Resonant Optical Parametric Oscillation in Periodically Poled Lithium Niobate; IEEE: Piscataway, NJ, USA, 1997. [Google Scholar]
- Martinelli, M.; Zhang, K.S.; Coudreau, T.; Maître, A.; Fabre, C. Ultra-low threshold CW triply resonant OPO in the near infrared using periodically poled lithium niobate. J. Opt. A Pure Appl. Opt. 2001, 3, 300. [Google Scholar] [CrossRef] [Green Version]
- Zeil, P.; Thilmann, N.; Pasiskevicius, V.; Laurell, F. High-power, single-frequency, continuous-wave optical parametric oscillator employing a variable reflectivity volume Bragg grating. Opt. Express 2014, 22, 29907–29913. [Google Scholar] [CrossRef]
- Boyd, R.W. Nonlinear Optics; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Williams, R.J.; Kitzler, O.; Bai, Z.; Sarang, S.; Jasbeer, H.; McKay, A.; Antipov, S.; Sabella, A.; Lux, O.; Spence, D.J.; et al. High power diamond Raman lasers. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1–14. [Google Scholar] [CrossRef]
- Yang, X.; Kitzler, O.; Spence, D.J.; Williams, R.J.; Bai, Z.; Sarang, S.; Zhang, L.; Feng, Y.; Mildren, R.P. Single-frequency 620 nm diamond laser at high power, stabilized via harmonic self-suppression and spatial-hole-burning-free gain. Opt. Lett. 2019, 44, 839–842. [Google Scholar] [CrossRef]
- Casula, R.; Penttinen, J.P.; Guina, M.; Kemp, A.J.; Hastie, J.E. Cascaded crystalline Raman lasers for extended wavelength coverage: Continuous-wave, third-Stokes operation. Optica 2018, 5, 1406–1413. [Google Scholar] [CrossRef]
- Antipov, S.; Sabella, A.; Williams, R.J.; Kitzler, O.; Spence, D.J.; Mildren, R.P. 1.2 kW quasi-steady-state diamond Raman laser pumped by an M2 = 15 beam. Opt. Lett. 2019, 44, 2506–2509. [Google Scholar] [CrossRef]
- Demtröder, W. Laser Spectroscopy 1: Basic Principles; Optical Parametric Oscillators; Springer: Berlin, Germany, 2014. [Google Scholar]
- Mildren, R.; Rabeau, J. Optical Engineering of Diamond; Diamond Raman Laser Design and Performance; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Dunn, M.H.; Stothard, D. Intra-Cavity Optical Parametric Oscillator. US 8,867,584 B2 21 October 2014. [Google Scholar]
- Laurell, F. Nonlinear Optics Continued-Optical Parametric Oscillators and Amplifiers. 2013. Available online: http://indico.ictp.it/event/a12164/session/18/contribution/11/material/0/0.pdf (accessed on 21 February 2021).
- Ebrahim-Zadeh, M. Handbook of Optics; Continuous-Wave Optical Parametric Oscillators; McGraw-Hill: New York, NY, USA, 2010; pp. 1–33. [Google Scholar]
- Ferrara, M.A.; Sirleto, L. Integrated Raman Laser: A Review of the Last Two Decades. Micromachines 2020, 11, 330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, Z.; Williams, R.J.; Jasbeer, H.; Sarang, S.; Kitzler, O.; Mckay, A.; Mildren, R.P. Large brightness enhancement for quasi-continuous beams by diamond Raman laser conversion. Opt. Lett. 2018, 43, 563–566. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.J.; Kitzler, O.; McKay, A.; Mildren, R.P. Investigating diamond Raman lasers at the 100 W level using quasi-continuous-wave pumping. Opt. Lett. 2014, 39, 4152–4155. [Google Scholar] [CrossRef] [PubMed]
- Henderson, A.; Esquinasi, P. Fiber Lasers VII: Technology, Systems, and Applications; 23-Watt 77% Efficient CW OPO Pumped by a Fiber Laser; International Society for Optics and Photonics: Bellingham, WA, USA, 2010. [Google Scholar]
- Kumar, S.C.; Das, R.; Samanta, G.K.; Ebrahim-Zadeh, M. Optimally-output-coupled, 17.5 W, fiber-laser-pumped continuous-wave optical parametric oscillator. Appl. Phys. B 2011, 102, 31–35. [Google Scholar]
- Smith, R.G.; Geusic, J.E.; Levinstein, H.J.; Rubin, J.J.; Singh, S.; Van Uitert, L.G. Continuous optical parametric oscillation in Ba2NaNb5O15. Appl. Phys. Lett. 1968, 12, 308–310. [Google Scholar] [CrossRef]
- Smith, R.; Parker, J. Experimental observation of and comments on optical parametric oscillation internal to the laser cavity. J. Appl. Phys. 1970, 41, 3401–3408. [Google Scholar] [CrossRef] [Green Version]
- Byer, R.L.; Oshman, M.K.; Young, J.F.; Harris, S.E. Visible CW parametric oscillator. Appl. Phys. Lett. 1968, 13, 109–111. [Google Scholar] [CrossRef]
- Byer, R.; Kovrigin, A.; Young, J. A cw ring-cavity parametric oscillator. Appl. Phys. Lett. 1969, 15, 136–137. [Google Scholar] [CrossRef]
- Sperling, J.; Hens, K. ; Tunable Laser Light Sources Advance Nanophotonics Research; Photonics Media: Pittsfield, MA, USA, 2018. [Google Scholar]
- Devi, K. Continuous-Wave Optical Parametric Oscillators and Frequency Conversion Sources from the Ultraviolet to the Mid-Infrared. Ph.D. Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 24 October 2013. [Google Scholar]
- Gerstenberger, D.; Wallace, R.W. Continuous-wave operation of a doubly resonant lithium niobate optical parametric oscillator system tunable from 966 to 1185 nm. JOSA B 1993, 10, 1681–1683. [Google Scholar] [CrossRef]
- Colville, F.; Padgett, M.; Dunn, M. Continuous-wave, dual-cavity, doubly resonant, optical parametric oscillator. Appl. Phys. Lett. 1994, 64, 1490–1492. [Google Scholar] [CrossRef]
- Colville, F.G.; Padgett, M.J.; Henderson, A.J.; Zhang, J.; Dunn, M.H. Continuous-wave parametric oscillator pumped in the ultraviolet. Opt. Lett. 1993, 18, 1065–1067. [Google Scholar] [CrossRef]
- Kozlovsky, W.J.; Nabors, C.D.; Eckardt, R.C.; Byer, R.L. Monolithic MgO: LiNbO3 doubly resonant optical parametric oscillator pumped by a frequency-doubled diode-laser-pumped Nd: YAG laser. Opt. Lett. 1989, 14, 66–68. [Google Scholar] [CrossRef]
- Lee, D.; Wong, N. Stabilization and tuning of a doubly resonant optical parametric oscillator. JOSA B 1993, 10, 1659–1667. [Google Scholar] [CrossRef]
- Bosenberg, W.R.; Drobshoff, A.; Alexander, J.I.; Myers, L.E.; Byer, R.L. Continuous-wave singly resonant optical parametric oscillator based on periodically poled LiNbO3. Opt. Lett. 1996, 21, 713–715. [Google Scholar] [CrossRef] [Green Version]
- Eckardt, R.C.; Nabors, C.D.; Kozlovsky, W.J.; Byer, R.L. Optical parametric oscillator frequency tuning and control. JOSA B 1991, 8, 646–667. [Google Scholar] [CrossRef]
- Yang, S.; Eckardt, R.; Byer, R. Continuous-wave singly resonant optical parametric oscillator pumped by a single-frequency resonantly doubled Nd: YAG laser. Opt. Lett. 1993, 18, 971–973. [Google Scholar] [CrossRef] [Green Version]
- Samanta, G.; Ebrahim-Zadeh, M. Continuous-wave singly-resonant optical parametric oscillator with resonant wave coupling. Opt. Express 2008, 16, 6883–6888. [Google Scholar] [CrossRef]
- Edwards, T.J.; Turnbull, G.A.; Dunn, M.H.; Ebrahimzadeh, M. Continuous-wave, singly-resonant, optical parametric oscillator based on periodically poled KTiOPO4. Opt. Express 2000, 6, 58–63. [Google Scholar] [CrossRef]
- Bosenberg, W.R.; Drobshoff, A.; Alexander, J.I.; Myers, L.E.; Byer, R.L. 93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator. Opt. Lett. 1996, 21, 1336–1338. [Google Scholar] [CrossRef] [Green Version]
- Lindsay, I.D.; Adhimoolam, B.; Gross, P.; Klein, M.E.; Boller, K.J. 110GHz rapid, continuous tuning from an optical parametric oscillator pumped by a fiber-amplified DBR diode laser. Opt. Express 2005, 13, 1234–1239. [Google Scholar] [CrossRef] [Green Version]
- Tan, W.; Liu, Z.; Cong, Z.; Zhao, Z.; Qin, Z.; Chen, X.; Yang, Z.; Rao, H.; Zhao, E.; Zhang, S.; et al. 4.4 W, Continuous-Wave, Narrow Linewidth Optical Parametric Oscillator at 3.77 µm. IEEE Photonics Technol. Lett. 2019, 31, 1131–1134. [Google Scholar] [CrossRef]
- Vainio, M.; Peltola, J.; Persijn, S.; Harren, F.J.; Halonen, L. Singly resonant cw OPO with simple wavelength tuning. Opt. Express 2008, 16, 11141–11146. [Google Scholar] [CrossRef] [Green Version]
- Klein, M.E.; Laue, C.K.; Lee, D.H.; Boller, K.J.; Wallenstein, R. Diode-pumped singly resonant continuous-wave optical parametric oscillator with wide continuous tuning of the near-infrared idler wave. Opt. Lett. 2000, 25, 490–492. [Google Scholar] [CrossRef]
- Samanta, G.; Fayaz, G.; Ebrahim-Zadeh, M. 1.59 W, single-frequency, continuous-wave optical parametric oscillator based on MgO: sPPLT. Opt. Lett. 2007, 32, 2623–2625. [Google Scholar] [CrossRef]
- Henderson, A.; Stafford, R. Intra-cavity power effects in singly resonant cw OPOs. Appl. Phys. B 2006, 85, 181–184. [Google Scholar] [CrossRef]
- Shukla, M.K.; Das, R. High-power single-frequency source in the mid-infrared using a singly resonant optical parametric oscillator pumped by Yb-fiber laser. IEEE J. Sel. Top. Quantum Electron. 2017, 24, 1–6. [Google Scholar] [CrossRef]
- Mieth, S.; Henderson, A.; Halfmann, T. Tunable, continuous-wave optical parametric oscillator with more than 1 W output power in the orange visible spectrum. Opt. Express 2014, 22, 11182–11191. [Google Scholar] [CrossRef] [Green Version]
- Vainio, M.; Ozanam, C.; Ulvila, V.; Halonen, L. Tuning and stability of a singly resonant continuous-wave optical parametric oscillator close to degeneracy. Opt. Express 2011, 19, 22515–22527. [Google Scholar] [CrossRef] [Green Version]
- Vainio, M.; Peltola, J.; Persijn, S.; Harren, F.J.M.; Halonen, L. Thermal effects in singly resonant continuous-wave optical parametric oscillators. Appl. Phys. B 2009, 94, 411. [Google Scholar] [CrossRef]
- Yu, C.X.; Augst, S.J.; Redmond, S.M.; Goldizen, K.C.; Murphy, D.V.; Sanchez, A.; Fan, T.Y. Coherent combining of a 4 kW, eight-element fiber amplifier array. Opt. Lett. 2011, 36, 2686–2688. [Google Scholar] [CrossRef]
- Odier, A.; Chtouki, R.; Bourdon, P.; Melkonian, J.M.; Lombard, L.; Lefebvre, M.; Durécu, A. Coherent combining of mid-infrared difference frequency generators. Opt. Lett. 2019, 44, 566–569. [Google Scholar] [CrossRef] [Green Version]
- Chtouki, R.; Bourdon, P.; Durécu, A.; Lombard, L.; Planchat, C.; Raybaut, M.; Godard, A. Nonlinear Frequency Generation and Conversion: Materials and Devices XIX; An Experimental Demonstration of Coherent Combining Applied to Optical Parametric Oscillators; International Society for Optics and Photonics: Bellingham, WA, USA, 2020. [Google Scholar]
- Marx, R.E.; Hubner, U.; Abdul-Halim, I.B.; Heppner, J.O.; Ni, Y.C.; Willenberg, G.; Weiss, C. Far-infrared CW Raman and laser gain of 14 NH3. IEEE J. Quantum Electron. 1981, 17, 1123–1127. [Google Scholar] [CrossRef]
- Jabr, S.N. Gain and noise characteristics of a continuous-wave Raman laser. Opt. Lett. 1987, 12, 690–692. [Google Scholar] [CrossRef]
- Brasseur, J.K.; Repasky, K.S.; Carlsten, J.L. Continuous-wave Raman laser in H2. Opt. Lett. 1998, 23, 367–369. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, C.; Jiang, H.; Qi, Y.; He, B.; Zhou, J.; Gu, X.; Feng, Y. Kilowatt ytterbium-Raman fiber laser. Opt. Express 2014, 22, 18483–18489. [Google Scholar] [CrossRef]
- Xiao, Q.; Yan, P.; Li, D.; Sun, J.; Wang, X.; Huang, Y.; Gong, M. Bidirectional pumped high power Raman fiber laser. Opt. Express 2016, 24, 6758–6768. [Google Scholar] [CrossRef]
- Supradeepa, V.; Nicholson, J.W. Power scaling of high-efficiency 1.5 μm cascaded Raman fiber lasers. Opt. Lett. 2013, 38, 2538–2541. [Google Scholar] [CrossRef] [Green Version]
- Pask, H.M. The design and operation of solid-state Raman lasers. Prog. Quantum Electron. 2003, 27, 3–56. [Google Scholar] [CrossRef]
- Hill, K.; Kawasaki, B.; Johnson, D. Low-threshold cw Raman laser. Appl. Phys. Lett. 1976, 29, 181–183. [Google Scholar] [CrossRef]
- Chen, Y.; Yao, T.; Leng, J.; Xiao, H. 1.6 kW Raman fiber amplifier based on multimode graded index fiber. In Proceedings of the 2019 18th International Conference on Optical Communications and Networks (ICOCN), Huangshan, China, 5–8 August 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Chen, Y.; Yao, T.; Xiao, H.; Leng, J.; Zhou, P. 3 kW passive-gain-enabled metalized Raman fiber amplifier with brightness enhancement. J. Light. Technol. 2021, 39, 1785–1790. [Google Scholar] [CrossRef]
- Glick, Y.; Shamir, Y.; Aviel, M.; Sintov, Y.; Goldring, S.; Shafir, N.; Pearl, S. 1.2 kW clad pumped Raman all-passive-fiber laser with brightness enhancement. Opt. Lett. 2018, 43, 4755–4758. [Google Scholar] [CrossRef]
- Supradeepa, V.R.; Nicholson, J.W.; Headley, C.; Lee, Y.W.; Palsdottir, B.; Jakobsen, D. Fiber Lasers IX: Technology, Systems, and Applications; Cascaded Raman Fiber Laser at 1480 nm with Output Power of 104 W; International Society for Optics and Photonics: Bellingham, WA, USA, 2012. [Google Scholar]
- Grabtchikov, A.S.; Lisinetskii, V.A.; Orlovich, V.A.; Schmitt, M.; Maksimenka, R.; Kiefer, W. Multimode pumped continuous-wave solid-state Raman laser. Opt. Lett. 2004, 29, 2524–2526. [Google Scholar] [CrossRef]
- Demidovich, A.A.; Grabtchikov, A.S.; Lisinetskii, V.A.; Burakevich, V.N.; Orlovich, V.A.; Kiefer, W. Continuous-wave Raman generation in a diode-pumped Nd3+: KGd (WO4)2 laser. Opt. Lett. 2005, 30, 1701–1703. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Pask, H. Nd: GdVO4 self-Raman laser using double-end polarised pumping at 880 nm for high power infrared and visible output. Appl. Phys. B 2012, 108, 17–24. [Google Scholar] [CrossRef]
- Fan, L.; Zhao, W.; Qiao, X.; Xia, C.; Wang, L.; Fan, H.; Shen, M. An efficient continuous-wave YVO4/Nd:YVO4/YVO4 self-Raman laser pumped by a wavelength-locked 878.9 nm laser diode. Chin. Phys. B 2016, 25, 114207. [Google Scholar] [CrossRef]
- Fan, L.; Fan, Y.X.; Duan, Y.H.; Wang, Q.; Wang, H.T.; Jia, G.H.; Tu, C.Y. Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd: YVO4 laser. Appl. Phys. B 2009, 94, 553–557. [Google Scholar] [CrossRef]
- Yu, H.; Li, Z.; Lee, A.J.; Li, J.; Zhang, H.; Wang, J.; Pask, H.M.; Piper, J.A.; Jiang, M. A continuous wave SrMoO4 Raman laser. Opt. Lett. 2011, 36, 579–581. [Google Scholar] [CrossRef]
- Pask, H.M. Continuous-wave, all-solid-state, intracavity Raman laser. Opt. Lett. 2005, 30, 2454–2456. [Google Scholar] [CrossRef]
- Spence, D.J.; Dekker, P.; Pask, H.M. Modeling of continuous wave intracavity Raman lasers. IEEE J. Sel. Top. Quantum Electron. 2007, 13, 756–763. [Google Scholar] [CrossRef]
- Bonner, G.M.; Lin, J.; Kemp, A.J.; Wang, J.; Zhang, H.; Spence, D.J.; Pask, H.M. Spectral broadening in continuous-wave intracavity Raman lasers. Opt. Express 2014, 22, 7492–7502. [Google Scholar] [CrossRef] [PubMed]
- Kitzler, O.; McKay, A.; Mildren, R.P. Continuous-wave wavelength conversion for high-power applications using an external cavity diamond Raman laser. Opt. Lett. 2012, 37, 2790–2792. [Google Scholar] [CrossRef]
- Lux, O.; Sarang, S.; Williams, R.J.; McKay, A.; Mildren, R.P. Single longitudinal mode diamond Raman laser in the eye-safe spectral region for water vapor detection. Opt. Express 2016, 24, 27812–27820. [Google Scholar] [CrossRef]
- Williams, R.J.; Nold, J.; Strecker, M.; Kitzler, O.; McKay, A.; Schreiber, T.; Mildren, R.P. Efficient Raman frequency conversion of high-power fiber lasers in diamond. Laser Photonics Rev. 2015, 9, 405–411. [Google Scholar] [CrossRef]
- Antipov, S.; Williams, R.J.; Sabella, A.; Kitzler, O.; Berhane, A.; Spence, D.J.; Mildren, R.P. Analysis of a thermal lens in a diamond Raman laser operating at 1.1 kW output power. Opt. Express 2020, 28, 15232–15239. [Google Scholar] [CrossRef]
- Lubeigt, W.; Bonner, G.M.; Hastie, J.E.; Dawson, M.D.; Burns, D.; Kemp, A.J. Continuous-wave diamond Raman laser. Opt. Lett. 2010, 35, 2994–2996. [Google Scholar] [CrossRef]
- Orlovich, V.A.; Burakevich, V.N.; Grabtchikov, A.S.; Lisinetskii, V.A.; Demidovich, A.A.; Eichler, H.J.; Turpin, P.Y. Continuous-wave intracavity Raman generation in PbWO4 crystal in the Nd: YVO4 laser. Laser Phys. Lett. 2005, 3, 71. [Google Scholar] [CrossRef]
- Dekker, P.; Pask, H.M.; Piper, J.A. All-solid-state 704 mW continuous-wave yellow source based on an intracavity, frequency-doubled crystalline Raman laser. Opt. Lett. 2007, 32, 1114–1116. [Google Scholar] [CrossRef]
- Parrotta, D.C.; Kemp, A.J.; Dawson, M.D.; Hastie, J.E. Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 1400108. [Google Scholar] [CrossRef]
- Fan, L.; Fan, Y.X.; Li, Y.Q.; Zhang, H.; Wang, Q.; Wang, J.; Wang, H.T. High-efficiency continuous-wave Raman conversion with a BaWO4 Raman crystal. Opt. Lett. 2009, 34, 1687–1689. [Google Scholar] [CrossRef] [PubMed]
- Savitski, V.G.; Friel, I.; Hastie, J.E.; Dawson, M.D.; Burns, D.; Kemp, A.J. Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers. IEEE J. Quantum Electron. 2011, 48, 328–337. [Google Scholar] [CrossRef] [Green Version]
- Chang, M.T.; Zhuang, W.Z.; Su, K.W.; Yu, Y.T.; Chen, Y.F. Efficient continuous-wave self-Raman Yb:KGW laser with a shift of 89 cm−1. Opt. Express 2013, 21, 24590–24598. [Google Scholar] [CrossRef] [Green Version]
- Kores, C.C.; Jakutis-Neto, J.; Geskus, D.; Pask, H.M.; Wetter, N.U. Diode-side-pumped continuous wave Nd3+:YVO4 self-Raman laser at 1176 nm. Opt. Lett. 2015, 40, 3524–3527. [Google Scholar] [CrossRef]
- Ferreira, M.S.; Wetter, N. Yb:KGW self-Raman laser with 89 cm−1 Stokes shift and more than 32% diode-to-Stokes optical efficiency. Opt. Laser Technol. 2020, 121, 105835. [Google Scholar] [CrossRef]
- Sarang, S.; Williams, R.J.; Lux, O.; Kitzler, O.; McKay, A.; Jasbeer, H.; Mildren, R.P. High-gain 87 cm−1 Raman line of KYW and its impact on continuous-wave Raman laser operation. Opt. Express 2016, 24, 21463–21473. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.J.; Spence, D.J.; Lux, O.; Mildren, R.P. High-power continuous-wave Raman frequency conversion from 1.06 µm to 1.49 µm in diamond. Opt. Express 2017, 25, 749–757. [Google Scholar] [CrossRef]
- Bai, Z.; Williams, R.J.; Jasbeer, H.; Sarang, S.; McKay, A.; Mildren, R.P. Brightness enhancement of continuous-wave beams using a diamond Raman laser. In Proceedings of the Conference on Lasers and Electro-Optics/Pacific Rim, Singapore, 31 July–4 August 2017; Optical Society of America: Washington, DC, USA, 2017. [Google Scholar]
- McKay, A.; Kitzler, O.; Mildren, R.P. Simultaneous brightness enhancement and wavelength conversion to the eye-safe region in a high-power diamond Raman laser. Laser Photonics Rev. 2014, 8, L37–L41. [Google Scholar] [CrossRef]
- Marshall, L.R.; Kaz, A.; Aytur, O. Multimode pumping of optical parametric oscillators. IEEE J. Quantum Electron. 1996, 32, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Van Herpen, M.M.J.W.; Li, S.; Bisson, S.E.; te Lintel Hekkert, S.; Harren, F.J.M. Tuning and stability of a continuous-wave mid-infrared high-power single resonant optical parametric oscillator. Appl. Phys. B 2002, 75, 329–333. [Google Scholar] [CrossRef]
- Nieuwenhuis, A.F.; Lee, C.J.; Sumpf, B.; van der Slot, P.J.; Erbert, G.; Boller, K.J. One-Watt level mid-IR output, singly resonant, continuous-wave optical parametric oscillator pumped by a monolithic diode laser. Opt. Express 2010, 18, 11123–11131. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, Y.; Pearl, S.; Peleg, G.; Fastig, S. High Brightness Tunable OPO Source for 8–12 µm Dial. In Proceedings of the 22nd Internation Laser Radar Conference (ILRC 2004), Matera City, Basilicata, Italy, 12–16 July 2004. [Google Scholar]
- Chang, R.; Lehmberg, R.; Duignan, M.; Djeu, N. Raman beam cleanup of a severely aberrated pump laser. IEEE J. Quantum Electron. 1985, 21, 477–487. [Google Scholar] [CrossRef]
- Chang, R.S.; Duignan, M.T.; Lehmberg, R.H.; Djeu, N. Excimer Lasers: Their Applications & New Frontiers in Lasers; Use of Stimulated Raman Scattering for Reducing the Divergence of Severely Aberrated Laser Beams; International Society for Optics and Photonics: Bellingham, WA, USA, 1984. [Google Scholar]
- Partanen, J.; Shaw, M. High-power forward Raman amplifiers employing low-pressure gases in light guides. I. Theory and applications. JOSA B 1986, 3, 1374–1389. [Google Scholar] [CrossRef]
- Dekker, P.; Pask, H.M.; Spence, D.J.; Piper, J.A. Continuous-wave, intracavity doubled, self-Raman laser operation in Nd:GdVO4 at 586.5 nm. Opt. Express 2007, 15, 7038–7046. [Google Scholar] [CrossRef] [PubMed]
- Parrotta, D.C.; Lubeigt, W.; Kemp, A.J.; Burns, D.; Dawson, M.D.; Hastie, J.E. Continuous-wave Raman laser pumped within a semiconductor disk laser cavity. Opt. Lett. 2011, 36, 1083–1085. [Google Scholar] [CrossRef] [Green Version]
- Casula, R.; Penttinen, J.P.; Kemp, A.J.; Guina, M.; Hastie, J.E. 1.4 µm continuous-wave diamond Raman laser. Opt. Express 2017, 25, 31377–31383. [Google Scholar] [CrossRef] [Green Version]
- Burakevich, V.N.; Lisinetskii, V.A.; Grabtchikov, A.S.; Demidovich, A.A.; Orlovich, V.A.; Matrosov, V.N. Diode-pumped continuous-wave Nd: YVO4 laser with self-frequency Raman conversion. Appl. Phys. B 2007, 86, 511–514. [Google Scholar] [CrossRef]
- Lee, A.J.; Pask, H.M.; Omatsu, T.; Dekker, P.; Piper, J.A. All-solid-state continuous-wave yellow laser based on intracavity frequency-doubled self-Raman laser action. Appl. Phys. B 2007, 88, 539–544. [Google Scholar] [CrossRef]
- Bai, Z.; Williams, R.J.; Kitzler, O.; Sarang, S.; Spence, D.J.; Mildren, R.P. 302 W quasi-continuous cascaded diamond Raman laser at 1.5 microns with large brightness enhancement. Opt. Express 2018, 26, 19797–19803. [Google Scholar] [CrossRef] [PubMed]
- Harris, S.E. Tunable optical parametric oscillators. Proc. IEEE 1969, 57, 2096–2113. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.F.; Pan, Y.Y.; Liu, Y.C.; Cheng, H.P.; Tsou, C.H.; Liang, H.C. Efficient high-power continuous-wave lasers at green-lime-yellow wavelengths by using a Nd: YVO4 self-Raman crystal. Opt. Express 2019, 27, 2029–2035. [Google Scholar] [CrossRef]
- Geskus, D.; Neto, J.J.; Pask, H.M.; Wetter, N.U. CLEO: QELS Fundamental Science; Two New Blue Laser Emission Lines from an Intracavity Raman Laser; Optical Society of America: Washington, DC, USA, 2014. [Google Scholar]
- Pask, H.M.; Dekker, P.; Mildren, R.P.; Spence, D.J.; Piper, J.A. Wavelength-versatile visible and UV sources based on crystalline Raman lasers. Prog. Quantum Electron. 2008, 32, 121–158. [Google Scholar] [CrossRef]
- Myers, L.E.; Bosenberg, W.R. Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators. IEEE J. Quantum Electron. 1997, 33, 1663–1672. [Google Scholar] [CrossRef]
- Zhao, H.; Lima, I.; Major, A. Near-infrared properties of periodically poled KTiOPO4 and stoichiometric MgO-doped LiTaO3 crystals for high power optical parametric oscillation with femtosecond pulses. Laser Phys. 2010, 20, 1404–1409. [Google Scholar] [CrossRef]
- Robertson, G. Optical Parametric Oscillators: A Comparison of New Materials. Ph.D. Thesis, University of St. Andrews, St. Andrews, Scotland, 1993. [Google Scholar]
- Akbari, R.; Major, A. Optical, spectral and phase-matching properties of BIBO, BBO and LBO crystals for Opticalparametric oscillation in the visible and near-infrared wavelength ranges. Laser Phys. 2013, 23, 035401. [Google Scholar] [CrossRef]
- Bierlein, J.D.; Vanherzeele, H. Potassium titanyl phosphate: Properties and new applications. JOSA B 1989, 6, 622–633. [Google Scholar] [CrossRef]
- Hellström, J. Nanosecond Optical Parametric Oscillators and Amplifiers Based on Periodically Poled KTiOPO4. Ph.D. Thesis, Fysiska Institutionen, Lund, Sweden, 2001. [Google Scholar]
- Karlsson, H. Fabrication of Periodically Poled Crystals from the KTP Family and Their Applications in Nonlinear Optics. Ph.D. Thesis, Fysiska Institutionen, Lund, Sweden, 1999. [Google Scholar]
- Lithium Niobate Properties. Available online: http://www.azurephotonicsus.com/material/crystals/Lithium%20Niobate%20crystal.html (accessed on 21 February 2021).
- Piper, J.A.; Pask, H.M. Crystalline Raman lasers. IEEE J. Sel. Top. Quantum Electron. 2007, 13, 692–704. [Google Scholar] [CrossRef]
- Linares, R.; Doering, P. Properties of large single crystal diamond. Diam. Relat. Mater. 1999, 8, 909–915. [Google Scholar] [CrossRef]
- Friel, I.; Geoghegan, S.L.; Twitchen, D.J.; Scarsbrook, G.A. Optics and Photonics for Counterterrorism and Crime Fighting VI and Optical Materials in Defence Systems Technology VII; Development of High Quality Single Crystal Diamond for Novel Laser Applications; International Society for Optics and Photonics: Bellingham, WA, USA, 2010. [Google Scholar]
- Martineau, P.M.; Gaukroger, M.P.; Guy, K.B.; Lawson, S.C.; Twitchen, D.J.; Friel, I.; Hansen, J.O.; Summerton, G.C.; Addison, T.P.G.; Burns, R. High crystalline quality single crystal chemical vapour deposition diamond. J. Condens. Matter Phys. 2009, 21, 364205. [Google Scholar] [CrossRef]
- Romanyuk, Y. Liquid-Phase Epitaxy of Doped KY(WO4)2 Layers for Waveguide Lasers. Ph.D. Thesis, EPFL, Lausanne, Switzerland, 2005. [Google Scholar]
- Kaminskii, A.A.; Konstantinova, A.F.; Orekhova, V.P.; Butashin, A.V.; Klevtsova, R.F.; Pavlyuk, A.A. Optical and nonlinear laser properties of the χ (3)-active monoclinic α-KY(WO4)2 crystals. Crystallogr. Rep. 2001, 46, 665–672. [Google Scholar] [CrossRef]
- Sabella, A.; Spence, D.J.; Mildren, R.P. Pump–probe measurements of the Raman gain coefficient in crystals using multi-longitudinal-mode beams. IEEE J. Quantum Electron. 2015, 51, 1–8. [Google Scholar] [CrossRef]
- Basiev, T.T.; Osiko, V.V.; Prokhorov, A.M.; Dianov, E.M. Topics in Applied Physics; Crystalline and Fiber Raman Lasers. Solid-State Mid-Infrared Laser Sources; Springer: Berlin, Germany, 2003; Volume 89. [Google Scholar]
- Denker, B.; Shklovsky, E. Handbook of Solid-State Lasers: Materials, Systems and Applications; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Lowenthal, D.D. Solid State Lasers VIII; CW Periodically Poled LiNbO3 Optical Parametric Oscillator Model with Strong Idler Absorption; International Society for Optics and Photonics: Bellingham, WA, USA, 1999. [Google Scholar]
- Grubb, S.G.; Erdogan, T.; Mizrahi, V.; Strasser, T.; Cheung, W.Y.; Reed, W.A.; Lemaire, P.J.; Miller, A.E.; Kosinski, S.G.; Nykolak, G.; et al. Optical Amplifiers and Their Applications; 1.3 μm Cascaded Raman Amplifier in Germanosilicate Fibers; Optical Society of America: Breckenridge, CO, USA, 1994. [Google Scholar]
- Grubb, S.G.; Strasser, T.; Cheung, W.Y.; Reed, W.A.; Mizrahi, V.; Erdogan, T.; Lemaire, P.J.; Vengsarkar, A.M.; DiGiovanni, D.J.; Peckham, D.W.; et al. Optical Amplifiers and Their Applications; High-Power 1.48 µm Cascaded Raman Laser in Germanosilicate Fibers; Optical Society of America: Davos, Switzerland, 1995. [Google Scholar]
- Codemard, C.A.; Dupriez, P.; Jeong, Y.; Sahu, J.K.; Ibsen, M.; Nilsson, J. High-power continuous-wave cladding-pumped Raman fiber laser. Opt. Lett. 2006, 31, 2290–2292. [Google Scholar] [CrossRef] [PubMed]
- Codemard, C.A.; Ji, J.; Sahu, J.K.; Nilsson, J. Fiber Lasers VII: Technology, Systems, and Applications; 100-W CW Cladding-Pumped Raman Fiber Laser at 1120 nm; International Society for Optics and Photonics: Bellingham, WA, USA, 2010. [Google Scholar]
- Feng, Y.; Taylor, L.R.; Calia, D.B. 150 W highly-efficient Raman fiber laser. Opt. Express 2009, 17, 23678–23683. [Google Scholar] [CrossRef] [PubMed]
- Glick, Y.; Fromzel, V.; Zhang, J.; Dahan, A.; Ter-Gabrielyan, N.; Pattnaik, R.K.; Dubinskii, M. High power, high efficiency diode pumped Raman fiber laser. Laser Phys. Lett. 2016, 13, 065101. [Google Scholar] [CrossRef]
- Glick, Y.; Fromzel, V.; Zhang, J.; Ter-Gabrielyan, N.; Dubinskii, M. High-efficiency, 154 W CW, diode-pumped Raman fiber laser with brightness enhancement. Appl. Opt. 2017, 56, B97–B102. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yao, T.; Xiao, H.; Leng, J.; Zhou, P. Greater than 2 kW all-passive fiber Raman amplifier with good beam quality. High Power Laser Sci. Eng. 2020, 8, e33. [Google Scholar] [CrossRef]
- Chen, Y.; Yao, T.; Xiao, H.; Leng, J.; Zhou, P. High-power cladding pumped Raman fiber amplifier with a record beam quality. Opt. Lett. 2020, 45, 2367–2370. [Google Scholar] [CrossRef]
- Fan, C.; Xiao, H.; Yao, T.; Xu, J.; Chen, Y.; Leng, J.; Zhou, P. Kilowatt level Raman amplifier based on 100 µm core diameter multimode GRIN fiber with M2 = 1.6. Opt. Lett. 2021, 46, 3432–3435. [Google Scholar] [CrossRef]
- Zlobina, E.A.; Kablukov, S.I.; Wolf, A.A.; Nemov, I.N.; Dostovalov, A.V.; Tyrtyshnyy, V.A.; Myasnikov, D.V.; Babin, S.A. Generating high-quality beam in a multimode LD-pumped all-fiber Raman laser. Opt. Express 2017, 25, 12581–12587. [Google Scholar] [CrossRef] [PubMed]
- Terry, N.B.; Engel, K.T.; Alley, T.G.; Russell, T.H. Use of a continuous wave Raman fiber laser in graded-index multimode fiber for SRS beam combination. Opt. Express 2007, 15, 602–607. [Google Scholar] [CrossRef] [PubMed]
Parameters | OPO | Raman Laser |
---|---|---|
Amplification process | Parametric amplification | Stimulated scattering |
Nonlinear susceptibility | χ(2) | χ(3) |
Nonlinearity | Parametric | Non-parametric |
Phase-matching | Yes | No |
Quantum defect | No | Yes |
OPO Based on | Configuration | Output Power (Signal + Idler) (W) | Signal Wavelength (nm) | Idler Wavelength (nm) | Efficiency 2 (%) | Ref. |
---|---|---|---|---|---|---|
LBO | DRO | 0.103 | 494–502 | 1320–1380 | 9.4 | [71] |
LBO | DRO | 0.2 | 502 | 1320 | - | [70] |
PPLN | SRO | 0.9 | 953–1000 | 1160–1233 | 64 | [45] |
PPLN | SRO | 3.55 | - | 3250 | - | [79] |
PPLN | SRO | 1 | - | 3400–3430 | - | [80] |
MgO:sPPLT | SRO | 3.6 1 | 866–978 | 1167–1427 | 40 | [77] |
PPLN/PPKTP | DRO | 0.03–0.5 | 656–1035 | 1096–2830 | 69 | [43] |
MgO:PPLN | SRO | 23 | 1500 | 3600 | 77 | [61] |
MgO:PPLN | SRO | 17.5 | 1627 | 3070 | 61 | [62] |
MgO:PPLN | SRO | 30 | 1550 | 3400 | 75 | [47] |
PPLN | TRO | 0.008 | 2000–2125 | 2150–2300 | - | [46] |
PPLN | SRO | 4.4 | - | 3772 | 46.9 | [81] |
Raman Lasers Based on | Configuration | Output Power | Wavelength (nm) | Crystal Length (mm) | Efficiency (%) | Ref. |
---|---|---|---|---|---|---|
Nd3+:KGW | Self-Raman | 54 mW | 1181 | 40 | 2.6 | [106] |
KGW | Intracavity | 800 mW | 1176 | 50 | 4 | [111] |
Diamond | Intracavity | 200 mW | 1240 | 3.3 | - | [118] |
PbWO4 | Intracavity | 178 mW | 1177 | 50 | 8 | [119] |
KGW | Intracavity | 1.56 W | 1176 | 25 | - | [120] |
Diamond | Intracavity | 4.4 W | 1228 | 6.5 | 14.2 | [121] |
SrWO4 | Intracavity | 2.23 W | 1179.5 | 46 | 10.5 | [109] |
BaWO4 | Intracavity | 3.36 W | 1180 | 30 | 13.2 | [122] |
Nd:GdVO4 | Self-Raman | 4.1 W | 1173 | 20 | 11.2 | [107] |
YVO4/Nd:YVO4/YVO4 | Self-Raman | 5.3 W | 1176 | 20 | 20 | [108] |
SrMoO4 | Intracavity | 2.18 W | 1173.5 | 20.5 | 8.7 | [110] |
KGW | Intracavity | 6.1 W | 1140–1155 | 30 | 33 | [123] |
Diamond | Intracavity | 5.1 W | 1217 | 6.5 | 28 | [123] |
Yb:KGW | Self-Raman | 1.7 W | 1099.6 | 6 | 21.8 | [124] |
Nd:YVO4 | Self-Raman | 1.8 W | 1176 | 22 | - | [125] |
Yb:KGW | Intracavity | 4.5 W | 1096 | 4 | 33 | [126] |
Ba(NO3)2 | External cavity | 164 mW | 543 | 68 | 5 | [105] |
Diamond | External cavity | 10.1 W | 1240 | 9.5 | 32 | [114] |
KYW | External cavity | 2.7 W | 1158 | 50 | 2 | [127] |
KGW | External cavity | 6.1 W | 1320 | 30 | 33 | [51] |
Diamond | External cavity | 14 W | 1240 | 8 | 38 | [28] |
Diamond | External cavity | 7 W | 1485 1 | 8 | 21 | [115] |
Diamond | External cavity | 108 W | 1240 | 8 | 34 | [60] |
Diamond | External cavity | 114 W | 1485 1 | 8 | 44 | [128] |
Diamond | External cavity | 154 W | 1240 | 8 | 50.5 | [116] |
Diamond | External cavity | 389 W | 1240 | 8 | 52.5 | [129] |
Diamond | External cavity | 1.2 kW | 1240 | 8.6 | 53 | [52] |
Properties at Room Temperature | LBO [151] | LN [155] | KTP [152,153] | BBO [151] |
---|---|---|---|---|
Crystal structure | Orthorhombic | Trigonal | Orthorhombic | Trigonal |
Optical transparency (µm) | 0.16–2.6 | 0.33–5.5 | 0.35–4.5 | 0.19–3.5 |
NLO coefficients 1 (pm/V) | 1.02, 0.057, −0.95 | 5.7, 5.3, 17.6 | 1.9, 3.6, 2.5, 4.4, 16.9 | 2.3, −0.16 |
Thermal conductivity (W/mK) | 3.5 | 5 | 2, 3, 3.3 2 | 1.2 |
Thermal expansion coefficient 2 (10−5 K−1) | 10.8, −8.8, 3.4 | 0.2, 0.22 | 1.1, 0.9, 0.06 | 0.4, 3.6 |
Thermo-optic coefficient (10−6 K−1) | −9.3, −13.6 | −0.87, 39.1 | 11, 13, 16 | −9.3, −16.6 |
Properties at Room Temperature | Diamond | BN | KGW | KYW [160,161] |
---|---|---|---|---|
Crystal structure | Cubic | Cubic | Monoclinic | Monoclinic |
Optical transparency (µm) | 0.23–100 | 0.3–1.8 | 0.3–5 | 0.34–5.5 |
Raman shift (cm−1) | 1332.3 | 1047.3 | 901, 768 1 | 905, 765 1 |
Raman gain coefficient (cm/GW, @1064 nm) | 10 [162] | 11 | 3.3, 4.4 1 | 3.6, 3.6 1 |
Raman linewidth FWHM (cm−1) | 1.5 | 0.4 | 7.8, 5.9 1 | 6–8 |
Thermal conductivity (W/mK) | 2000 | 1.2 | 2.6, 3.8, 3.4 2 | 3.3 3 |
Thermal expansion coefficient (10−6 K−1) | 1.1 | 13 [163] | 1.6–8.5 [164] | 2–8.5 [164] |
Thermo-optic coefficient (10−6 K−1) | 15 | 20 | 0.4 | 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarang, S.; Richardson, M. Power Scaling of CW Crystalline OPOs and Raman Lasers. Photonics 2021, 8, 565. https://doi.org/10.3390/photonics8120565
Sarang S, Richardson M. Power Scaling of CW Crystalline OPOs and Raman Lasers. Photonics. 2021; 8(12):565. https://doi.org/10.3390/photonics8120565
Chicago/Turabian StyleSarang, Soumya, and Martin Richardson. 2021. "Power Scaling of CW Crystalline OPOs and Raman Lasers" Photonics 8, no. 12: 565. https://doi.org/10.3390/photonics8120565
APA StyleSarang, S., & Richardson, M. (2021). Power Scaling of CW Crystalline OPOs and Raman Lasers. Photonics, 8(12), 565. https://doi.org/10.3390/photonics8120565