A Narrow-Linewidth Optical Parametric Oscillator Inserted with Fabry–Perot Etalon
Abstract
:1. Introduction
2. The Fabrication and Optical Properties of the Ultra-Thin Silicon Wafers
3. Experiment and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meisenheimer, S.K.; Fürst, J.U.; Buse, K.; Breunig, I. Continuous-wave optical parametric oscillation tunable up to an 8 μm wavelength. Optica 2017, 4, 189–192. [Google Scholar] [CrossRef]
- Heng, J.; Liu, P. Enhanced spectral broadening in an optical parametric oscillator based on a PPLN crystal. Opt. Express 2020, 28, 16740–16748. [Google Scholar] [CrossRef] [PubMed]
- Heng, J.; Liu, P.; Zhang, Z.W. Spectral broadening in chirped-pulse optical parametric oscillators based on KTiOAsO4. Opt. Lett. 2020, 45, 5085–5088. [Google Scholar] [CrossRef]
- Li, D.; Yu, Y.; Li, Y.; Wang, Y.; Liu, H.; Jin, G.-Y. Narrow linewidth 2.1 μm optical parametric oscillator with intra-cavity configuration based on wavelength-locked 878.6 nm in-band pumpin. Opt. Laser Technol. 2020, 131, 106412. [Google Scholar] [CrossRef]
- Ning, C.X.; Liu, P.; Qin, Y.X.; Zhang, Z.W. Continuous wavelength tuning of nondegenerate femtosecond doubly resonant optical parametric oscillators. Opt. Lett. 2020, 45, 2551–2554. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.F.; Zhang, J.N.; Wang, Y. High power, twin-band mid-infrared PPMgLN optical parametric oscillator pumped at 1.679 µm. Opt. Lett. 2020, 45, 1281–1284. [Google Scholar] [CrossRef] [PubMed]
- Brosnan, S.; Byer, R.L. Optical parametric oscillator threshold and linewidth studies. IEEE J. Quantum Electron. 1979, 15, 415–431. [Google Scholar] [CrossRef]
- Bosenberg, W.R.; Pelouch, W.S.; Tang, C.L. High-efficiency and narrow-linewidth operation of a two-crystal β-BaB2O4, optical parametric oscillator. Appl. Phys. Lett. 1989, 55, 1952–1954. [Google Scholar] [CrossRef]
- Huang, W.; Syms, R.R.A.; Stagg, J.A. Lohmann, Precision mems flexure mount for a littman tunable external cavity laser. IEE P-Sci. Meas. Technol. 2004, 151, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Deng, D.; Zhu, X.A.; Zhou, Y.; Kong, Y.; Yan, Z.; Xu, Z. Optical parametric system with a compound cavity and a grazing-incidence prism. J. Opt. Soc. Am. B 1997, 14, 1496–1500. [Google Scholar]
- Samanta, G.K.; Fayaz, G.R.; Sun, Z.; Ebrahim-Zadeh, M. High-power, single-frequency, continuous-wave optical parametric oscillator based on MgO: sPPLT. Opt. Lett. 2007, 32, 2623. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Bahuguna, K.C.; Kumar, V. Narrow-band-width infrared radiation from a noncritically phase-matched ZnGeP2, optical parametric oscillator. J. Russ. Laser Res. 2015, 36, 1–8. [Google Scholar] [CrossRef]
- Robertson, G.; Henderson, A.; Dunn, M.H. Efficient, single-axial mode oscillation of a beta barium borate optical parametric oscillator pumped by an excimer laser. Appl. Phys. Lett. 1993, 62, 123–125. [Google Scholar] [CrossRef]
- Huisken, F.; Marquez, J.; Kaloudis, M.; Orlov, S.N.; Smirnov, V.V.; Chuzavkov, Y.L.; Polivanov, Y.N. Single-mode KTiOPO4 optical parametric oscillator. Opt. Lett. 1995, 20, 2306. [Google Scholar]
- Kleinman, D.A.; Kisliuk, P.P. Discrimination against unwanted orders in the Fabry–Perot resonator. Bell Syst. Tech. J. 2014, 41, 453–462. [Google Scholar] [CrossRef]
- Heidemann, K.; Kleemann, B. Littrow Grating and Uses of a Littrow Grating. U.S. Patent 20,020,008,912, 24 January 2002. [Google Scholar]
- Sang, E.P.; Kwon, T.Y.; Shin, E.J.; Lee, H.S. A compact extended-cavity diode laser with a littman configuration. IEEE T. Instrum. Meas. 2003, 52, 280–283. [Google Scholar] [CrossRef]
- Zhang, Z.; Balskus, K.; Mccracken, R.A.; Reid, D.T. Mode-resolved 10-Ghz frequency comb from a femtosecond optical parametric oscillator. Opt. Lett. 2015, 40, 2692–2695. [Google Scholar] [CrossRef]
- Gloster, L.A.W.; Mckinnie, I.T.; Jiang, Z.X.; King, T.A.; Boonengering, J.M.; Van der Veer, W.E.; Hogervorst, W. Narrow-band b-BaB2O4 optical parametric oscillator in a grazing-incidence configuration. J. Opt. Soc. Am. B 1995, 12, 2117–2121. [Google Scholar] [CrossRef]
- Hawthorn, C.J.; Weber, K.P.; Scholten, R.E. Littrow configuration tunable external cavity diode laser with fixed direction output beam. Rev. Sci. Instrum. 2001, 72, 4477–4479. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.X.; Chaitanya Kumar, S.; Ebrahim-Zadeh, M. Broadly tunable, intracavity injection-seeded, hybrid optical parametric oscillator. Opt. Lett. 2021, 46, 4502–4505. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, G.Y.; Yao, B.Q.; Wang, R.X.; Yang, C.; Duan, X.M.; Dai, T.G.; Wang, Y.Z. Comparison of mid-infrared ZnGeP2 rectangle ring optical parametric oscillators of three types of resonant regimes. Appl. Opt. 2019, 58, 4163–4169. [Google Scholar] [CrossRef]
- Kreuzer, L.B. Single mode oscillation of a pulsed singly resonant optical parametric oscillator. Appl. Phys. Lett. 1969, 15, 263–265. [Google Scholar] [CrossRef]
- Huang, H.; Arsenijević, D.; Schires, K.; Sadeev, T.; Erasme, D.; Bimberg, D.; Grillot, F. Efficiency of four-wave mixing in injection-locked InAs/GaAs quantum-dot lasers. AIP Adv. 2016, 6, 125105. [Google Scholar] [CrossRef] [Green Version]
- Djukic, D.; Bakhru, H.; Espinola, R.L.; Osgood, R.M.; Roth, R.M.; Bakhru, S.; Izuhara, T. Integrable wide-free-spectral-range Fabry–Perot optical filters using free-standing LiNbO3 thin films. Opt. Lett. 2005, 30, 994–996. [Google Scholar]
- Lee, S.; Kim, H.N.; Kim, Y.H.; Kim, T.; Cho, S.; Kang, H.B.; Hwang, C.S. Design method of tunable pixel with phase—Change material for diffractive optical elements. ETRI J. 2017, 39, 390–397. [Google Scholar] [CrossRef]
- Xu, R.; Lu, Y.; Jiang, C.; Chen, J.; Mao, P.; Gao, G.; Zhang, L.B.; Wu, S. Facile fabrication of three-dimensional graphene foam/poly (dimethylsiloxane) composites and their potential application as strain sensor. ACS Appl. Mater. Inter. 2014, 6, 13455–13460. [Google Scholar] [CrossRef]
- Ganikhanov, F.; Caughey, T.; Vodopyanov, K.L. Narrow-linewidth middle-infrared ZnGeP2 optical parametric oscillator. J. Opt. Soc. Am. B 2001, 18, 818–822. [Google Scholar] [CrossRef]
- Lin, S.T.; Lin, Y.Y.; Huang, Y.C.; Chiang, A.C.; Shy, J.T. Continuous-wave, singly resonant OPO at 3μm. Physics 2008, 0803, 2113. [Google Scholar]
- Schlup, P.; Butterworth, S.D.; Mckinnie, I.T. Efficient single-frequency pulsed periodically poled lithium niobate optical parametric oscillator. Opt. Commun. 1998, 154, 191–195. [Google Scholar] [CrossRef]
- Zhou, B.; Jiang, H.; Wang, R.; Lu, C. Optical fiber fiber Fabry–Perot filter with tunable cavity for high-precision resonance wavelength adjustment. Lightwave Technol. 2015, 33, 2950–2954. [Google Scholar] [CrossRef]
- Peng, Y.F.; Wei, X.B.; Xie, G.; Gao, J.R.; Li, D.M.; Wang, W.M. A high-power narrow-linewidth optical parametric oscillator based on PPMgLN. Laser Phys. 2013, 23, 055405. [Google Scholar] [CrossRef]
- Perrett, B.J.; Terry, J.A.C.; Mason, P.D.; Orchard, D.A. Spectral line narrowing in PPLN OPO devices for 1-μm wavelength doubling. SPIE 2004, 5620, 275–279. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Lu, C.; Wang, N.; Qi, Z.; Cui, Y. A Narrow-Linewidth Optical Parametric Oscillator Inserted with Fabry–Perot Etalon. Photonics 2021, 8, 528. https://doi.org/10.3390/photonics8120528
Hu X, Lu C, Wang N, Qi Z, Cui Y. A Narrow-Linewidth Optical Parametric Oscillator Inserted with Fabry–Perot Etalon. Photonics. 2021; 8(12):528. https://doi.org/10.3390/photonics8120528
Chicago/Turabian StyleHu, Xuefang, Changgui Lu, Niuniu Wang, Zhengqing Qi, and Yiping Cui. 2021. "A Narrow-Linewidth Optical Parametric Oscillator Inserted with Fabry–Perot Etalon" Photonics 8, no. 12: 528. https://doi.org/10.3390/photonics8120528