Thermo-Optic Phase Tuners Analysis and Design for Process Modules on a Silicon Nitride Platform
Abstract
:1. Introduction
2. Thermo-Optic Phase Shifter Working Principle
3. Heat Transfer Modeling
3.1. Reference Cross-Section
3.2. Multi-Parametric Analysis of Improved Cross-Sections
4. Heating Element Design
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Muñoz, P. Photonic integration in the palm of your hand: Generic technology and multi-project wafers, technical roadblocks, challenges and evolution. In Proceedings of the 2017 Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, USA, 19–23 March 2017; pp. 1–3. [Google Scholar]
- Muñoz, P. Photonic integrated circuits using generic technologies. IEEE Photonics Soc. Newsl. 2016, 30, 4–12. [Google Scholar]
- Bogaerts, W.; Baets, R.; Dumon, P.; Wiaux, V.; Beckx, S.; Taillaert, D.; Luyssaert, B.; Campenhout, J.V.; Bienstman, P.; Thourhout, D.V. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J. Light. Technol. 2005, 23, 401–412. [Google Scholar] [CrossRef]
- Ambrosius, H.P.M.M.; Leijtens, X.J.M.; de Vries, T.; Bolk, J.; Smalbrugge, E.; Smit, M.K. A Generic InP-based Photonic Integration Technology. In Proceedings of the IPRM 2011—23rd International Conference on Indium Phosphide and Related Materials, Berlin, Germany, 22–26 May 2011; pp. 1–4. [Google Scholar]
- Leinse, A.; Heideman, R.G.; Klein, E.J.; Dekker, R.; Roeloffzen, C.G.H.; Marpaung, D.A.I. TriPleX platform technology for photonic integration: Applications from UV through NIR to IR. In Proceedings of the 2011 ICO International Conference on Information Photonics, Ottawa, ON, Canada, 18–20 May 2011; pp. 1–2. [Google Scholar] [CrossRef]
- Aalto, T.; Cherchi, M.; Harjanne, M.; Sun, F.; Kapulainen, M. 3-micron Silicon Photonics. In Optical Fiber Communication Conference; Optical Society of America: San Diego, CA, USA, 2018. [Google Scholar] [CrossRef]
- Smit, M.; Leijtens, X.; Ambrosius, H.; Bente, E.; Van der Tol, J.; Smalbrugge, B.; De Vries, T.; Geluk, E.J.; Bolk, J.; Van Veldhoven, R.; et al. An introduction to InP-based generic integration technology. Semicond. Sci. Technol. 2014, 29, 083001. [Google Scholar] [CrossRef]
- Augustin, L.M.; Santos, R.; den Haan, E.; Kleijn, S.; Thijs, P.J.; Latkowski, S.; Zhao, D.; Yao, W.; Bolk, J.; Ambrosius, H.; et al. InP-based generic foundry platform for photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 2017, 24, 1–10. [Google Scholar] [CrossRef]
- Soares, F.M.; Baier, M.; Gaertner, T.; Feyer, M.; Möhrle, M.; Grote, N.; Schell, M. High-performance InP PIC technology development based on a generic photonic integration foundry. In Optical Fiber Communication Conference; Optical Society of America: San Diego, CA, USA, 2018; p. M3F–3. [Google Scholar]
- Muñoz, P.; Micó, G.; Bru, L.A.; Pastor, D.; Pérez, D.; Doménech, J.D.; Fernández, J.; Baños, R.; Gargallo, B.; Alemany, R.; et al. Silicon Nitride Photonic Integration Platforms for Visible, Near-Infrared and Mid-Infrared Applications. Sensors 2017, 17, 2088. [Google Scholar] [CrossRef]
- Blumenthal, D.J.; Heideman, R.; Geuzebroek, D.; Leinse, A.; Roeloffzen, C. Silicon Nitride in Silicon Photonics. Proc. IEEE 2018, 106, 2209–2231. [Google Scholar] [CrossRef] [Green Version]
- Munoz, P.; van Dijk, P.W.; Geuzebroek, D.; Geiselmann, M.; Dominguez, C.; Stassen, A.; Doménech, J.D.; Zervas, M.; Leinse, A.; Roeloffzen, C.G.; et al. Foundry developments toward silicon nitride photonics from visible to the mid-infrared. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–13. [Google Scholar] [CrossRef]
- Sun, J.; Timurdogan, E.; Yaacobi, A.; Hosseini, E.S.; Watts, M.R. Large-scale nanophotonic phased array. Nature 2013, 493, 195–199. [Google Scholar] [CrossRef]
- Roeloffzen, C.G.; Zhuang, L.; Taddei, C.; Leinse, A.; Heideman, R.G.; van Dijk, P.W.; Oldenbeuving, R.M.; Marpaung, D.A.; Burla, M.; Boller, K.J. Silicon nitride microwave photonics circuits. Appl. Phys. Lett. 2013, 21, 22937–22961. [Google Scholar] [CrossRef] [Green Version]
- Kwong, D.; Hosseini, A.; Covey, J.; Zhang, Y.; Xu, X.; Subbaraman, H.; Chen, R.T. On-chip silicon optical phased array for two-dimensional beam steering. Opt. Lett. 2014, 39, 941–944. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liang, L.; Chen, Y.; Jia, P.; Qin, L.; Liu, Y.; Ning, Y.; Wang, L. Improved performance of optical phased arrays assisted by transparent graphene nanoheaters and air trenches. RSC Adv. 2018, 8, 8442–8449. [Google Scholar]
- Pérez, D.; Gasulla, I.; Crudgington, L.; Thomson, D.J.; Khokhar, A.Z.; Li, K.; Cao, W.; Mashanovich, G.Z.; Capmany, J. Multipurpose silicon photonics signal processor core. Nat. Commun. 2017, 8, 636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fandiño, J.S.; Muñoz, P.; Doménech, D.; Capmany, J. A monolithic integrated photonic microwave filter. Nat. Photonics 2016, 11, 124–130. [Google Scholar] [CrossRef] [Green Version]
- Zheng, D.; Doménech, J.D.; Pan, W.; Zou, X.; Yan, L.; Pérez, D. Low-loss broadband 5× 5 non-blocking Si3N4 optical switch matrix. Opt. Lett. 2019, 44, 2629–2632. [Google Scholar] [CrossRef]
- Fang, Q.; Song, J.F.; Liow, T.Y.; Cai, H.; Yu, M.B.; Lo, G.Q.; Kwong, D.L. Ultralow Power Silicon Photonics Thermo-Optic Switch With Suspended Phase Arms. IEEE Photonics Technol. Lett. 2011, 23, 525–527. [Google Scholar] [CrossRef]
- Fang, J.S.Q.; Tao, S.H.; Liow, T.Y.; Yu, M.B.; Lo, G.Q.; Kwong, D.L. Fast and low power Michelson interferometer thermo-optical switch on SOI. Opt. Express 2008, 16, 525–527. [Google Scholar]
- Watts, M.R.; Sun, J.; DeRose, C.; Trotter, D.C.; Young, R.W.; Nielson, G.N. Adiabatic thermo-optic Mach–Zehnder switch. Opt. Lett. 2013, 38, 733–735. [Google Scholar] [CrossRef] [PubMed]
- Hai, M.S.; Leinse, A.; Veenstra, T.; Liboiron-Ladouceur, O. A Thermally Tunable 1 × 4 Channel Wavelength Demultiplexer Designed on a Low-Loss Si3N4 Waveguide Platform. Photonics 2015, 27, 1065–1080. [Google Scholar]
- Melati, D.; Alippi, A.; Melloni, A. Reconfigurable photonic integrated mode (de)multiplexer for SDM fiber transmission. Opt. Express 2016, 24, 12625–12634. [Google Scholar] [CrossRef] [Green Version]
- Yaacobi, A.; Sun, J.; Moresco, M.; Leake, G.; Coolbaugh, D.; Watts, M.R. Integrated phased array for wide-angle beam steering. Opt. Lett. 2014, 39, 4575–4578. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, L.; Roeloffzen, C.G.H.; Hoekman, M.; Boller, K.J.; Lowery, A.J. Programmable photonic signal processor chip for radiofrequency applications. Optica 2015, 2, 854–859. [Google Scholar] [CrossRef] [Green Version]
- López, D.P.; Gutierre, A.M.; Sánchez, E.; Dasmahapatra, P.; Capmany, J. Integrated photonic tunable basic units using dual-drive directional couplers. Opt. Express 2019, 27, 38071–38086. [Google Scholar] [CrossRef] [Green Version]
- Gilardi, G.; Weiming, Y.; Haghighi, H.R.; Leiijtens, X.J.M.; Smit, M.K.; Wale, M.J. Deept Trenches for Thermal Crosstalk Reduction in InP-Based Photonic Integrated Circuits’. J. Light. Technol. 2014, 32, 4864–4870. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Liu, W.; Yuan, Z.; Liang, X.; Chen, H.; Xu, X.; Tang, F. Low Power Consumption VOA Array With Air Trenches and Curved Waveguide. IEEE Photonics J. 2018, 10, 501–503. [Google Scholar] [CrossRef]
- Malik, A.; Dwivedi, S.; Van Landschoot, L.; Muneeb, M.; Shimura, Y.; Lepage, G.; Van Campenhout, J.; Vanherle, W.; Van Opstal, T.; Loo, R.; et al. Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared. Opt. Express 2014, 22, 28479–28488. [Google Scholar] [CrossRef] [PubMed]
- Ceccarelli, F.; Atzeni, S.; Pentangelo, C.; Pellegatta, F.; Crespi, A.; Osellame, R. Low power reconfigurability and reduced crosstalk in integrated photonic circuits fabricated by femtosecond laser micromachining. arXiv 2020, arXiv:2001.08144. [Google Scholar] [CrossRef]
- Masood, A.; Pantouvaki, M.; Lepage, G.; Verheyen, P.; Van Campenhout, J.; Absil, P.; Van Thourhout, D.; Bogaerts, W. Comparison of heater architectures for thermal control of silicon photonic circuits. In Proceedings of the 10th International Conference on Group IV Photonics, Seoul, Korea, 28–30 August 2013; pp. 83–84. [Google Scholar]
- Zhu, S.; Hu, T.; Xu, Z.; Dong, Q.Z.Y.; Li, Y.; Singh, N. An improved Thermo-Optic Phase Shifter with AlN Block for Silicon Photonics. In Optical Fiber Communication Conference; Optical Society of America: San Diego, CA, USA, 2019; Volume 34, pp. 6898–6910. [Google Scholar]
- Bergman, T.L.; Incropera, F.P.; DeWitt, D.P.; Lavine, A.S. Fundamentals of Heat and Mass Transfer; John Wiley & Sons: Jefferson City, MO, USA, 2011. [Google Scholar]
- Murata, S.; Nakada, H.; Abe, T. Theoretical and experimental evaluation of the effect of adding a heat-bypass structure to a laser diode array. Jpn. J. Appl. Phys. 1993, 32, 1112. [Google Scholar] [CrossRef]
- VLC Photonics and Centro Nacional de Microelectrónica (CNM-VLC). Silicon Nitride Photonic Integration Platform. Available online: http://www.imb-cnm.csic.es/index.php/en/clean-room/silicon-nitride-technology (accessed on 14 April 2020).
- Pérez, D.; Baños, R.; Doménech, J.D.; Sánchez, A.M.; Cirera, J.M.; Mas, R.; Sánchez, J.; Durán, S.; Pardo, E.; Domínguez, C.; et al. Thermal tuners on a silicon nitride platform. arXiv 2016, arXiv:1604.02958. [Google Scholar]
- Lienig, J. Introduction to electromigration-aware physical design. In Proceedings of the 2006 International Symposium on Physical Design, San Jose, CA, USA, 9–12 April 2006; pp. 39–46. [Google Scholar]
- Lloyd, J. Electromigration for Designers: An Introduction for the Non-Specialist. Available online: https://www.eetimes.com/electromigration-for-designers-an-introduction-for-the-non-specialist/ (accessed on 14 April 2020).
- Gardes, F.Y.; Reed, G.T.; Emerson, N. A sub-micron depletion-type photonic modulator in Silicon On Insulator. Opt. Express 2005, 13, 8845–8854. [Google Scholar] [CrossRef]
- Lim, H.; Yin, H.; Xianyu, W.; Kwon, J.Y.; Zhang, X.; Cho, H.S.; Kim, J.M.; Park, K.B.; Kim, D.Y.; Jung, J.S.; et al. Ultra low sheet resistance on poly silicon film by Excimer laser activation. J. Korean Phys. Soc. 2006, 48, 1112–1115. [Google Scholar]
- Hwang, W.J.; Shin, K.S.; Roh, J.H.; Lee, D.S.; Choa, S.H. Development of Micro-Heaters with Optimized Temperature Compensation Design for Gas Sensors. Sensors 2011, 11, 2580–2591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Briand, D.; Pham, P.Q.; de Rooij, N.F. Reliability of freestanding polysilicon microheaters to be used as igniters in solid propellant microthrusters. Sens. Actuators A Phys. 2007, 135, 329–336. [Google Scholar] [CrossRef]
- Park, J.Y.; Moon, D.I.; Seol, M.L.; Jeon, C.H.; Jeon, G.J.; Han, J.W.; Kim, C.K.; Park, S.J.; Lee, H.C.; Choi, Y.K. Controllable electrical and physical breakdown of poly-crystalline silicon nanowires by thermally assisted electromigration. Sci. Rep. 2016, 6, 19314. [Google Scholar] [CrossRef] [PubMed]
Material | k [W/m·k] | [kg/m] | C [J/kg·k] | Rs [/sq] |
---|---|---|---|---|
Au | 310 | 19320 | 130 | 0.368 |
Al | 237 | 2712 | 921 | 0.034 |
Poly-Si | 131 | 2500 | 710 | 16 |
SiO | 1.5 | 2650 | 710 | |
SiN | 30.5 | 3170 | 800 | |
Si | 130 | 2500 | 710 | |
Air | 0.031 | 1.1839 | 1006 |
HEATER | TRENCH | UNDERCUT | ||||||
---|---|---|---|---|---|---|---|---|
Material | Width | Length | Thickness | Offset | Width | Height | Width | Height |
Au | 7, 6, 5, 2.5 | 1000 | 0.1 | 2.5 | 7 | 2.3 | 30 | 2 |
Al | 7, 6, 5, 2.5 | 1000 | 0.6 | 0.1 | 7 | 4.8 | 30 | 2 |
Poly-Si | 7, 6, 5, 2.5 | 100 | 0.48 | 0.1 | 7 | 4.8 | 30 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alemany, R.; Muñoz, P.; Pastor, D.; Domínguez, C. Thermo-Optic Phase Tuners Analysis and Design for Process Modules on a Silicon Nitride Platform. Photonics 2021, 8, 496. https://doi.org/10.3390/photonics8110496
Alemany R, Muñoz P, Pastor D, Domínguez C. Thermo-Optic Phase Tuners Analysis and Design for Process Modules on a Silicon Nitride Platform. Photonics. 2021; 8(11):496. https://doi.org/10.3390/photonics8110496
Chicago/Turabian StyleAlemany, Rubén, Pascual Muñoz, Daniel Pastor, and Carlos Domínguez. 2021. "Thermo-Optic Phase Tuners Analysis and Design for Process Modules on a Silicon Nitride Platform" Photonics 8, no. 11: 496. https://doi.org/10.3390/photonics8110496
APA StyleAlemany, R., Muñoz, P., Pastor, D., & Domínguez, C. (2021). Thermo-Optic Phase Tuners Analysis and Design for Process Modules on a Silicon Nitride Platform. Photonics, 8(11), 496. https://doi.org/10.3390/photonics8110496