# Optical Image Encryption System Using Several Tilted Planes

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Optical Diffraction on Tilted Planes

## 3. DRPE Using Tilted Plane: Optical Image Encryption and Decryption Systems

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Réfrégier, P.; Javidi, B. Optical image encryption based on input plane and Fourier plane random encoding. Opt. Lett.
**1995**, 20, 767–769. [Google Scholar] [CrossRef] [PubMed] - Javidi, B.; Carnicer, A.; Yamaguchi, M.; Nomura, T.; Pérez-Cabré, E.; Millán, M.; Nishchal, N.; Torroba, R.; Barrera, J.; He, W.; et al. Roadmap on optical security. J. Opt.
**2016**, 18, 083001. [Google Scholar] [CrossRef] - Chen, W.; Javidi, B.; Chen, X. Advances in optical security systems. Adv. Opt. Photonics
**2014**, 6, 120–155. [Google Scholar] [CrossRef] - Millán, M.S.; Pérez-Cabré, E. Optical data encryption. In Optical and Digital Image Processing: Fundamentals and Applications; Cristóbal, G., Schelkens, P., Thienpont, H., Eds.; Wiley-VCH Verlag GmbH & Co.: Hoboken, NJ, USA, 2011; pp. 739–767. [Google Scholar]
- Millán, M.S.; Pérez-Cabré, E.; Vilardy, J.M. Nonlinear techniques for secure optical encryption and multifactor authentication. In Advanced Secure Optical Image Processing for Communications; Al Falou, A., Ed.; IOP Publishing: Bristol, UK, 2018; pp. 8-1–8-33. [Google Scholar]
- Goodman, J.W. Introduction to Fourier Optics; McGraw-Hill: New York, NY, USA, 1996. [Google Scholar]
- Matoba, O.; Javidi, B. Encrypted optical memory system using three-dimensional keys in the Fresnel domain. Opt. Lett.
**1999**, 24, 762–764. [Google Scholar] [CrossRef] [PubMed] - Situ, G.; Zhang, J. Double random phase encoding in the Fresnel domain. Opt. Lett.
**2004**, 29, 1584–1586. [Google Scholar] [CrossRef] [PubMed] - Unnikrishnan, G.; Joseph, J.; Singh, K. Optical encryption by double-random phase encoding in the fractional Fourier domain. Opt. Lett.
**2000**, 25, 887–889. [Google Scholar] [CrossRef] [PubMed] - Matsushima, K. Formulation of the rotational transformation of wave fields and their application to digital holography. App. Opt.
**2008**, 47, D110–D116. [Google Scholar] [CrossRef] [PubMed]

**Figure 2.**Optical scheme of the encryption system using the DRPE technique and the optical diffraction on two tilted planes.

**Figure 3.**(

**a**) Original image $f({x}_{1},{y}_{1})$. (

**b**) Random code image $s({x}_{1},{y}_{1})$ of the RPM $r({x}_{1},{y}_{1})$. (

**c**) Encrypted image $e({x}_{3},{y}_{3})$ for the security key ${d}_{1}=200$ mm, ${d}_{2}=300$ mm, ${\theta}_{y}=14.{5}^{\circ}$, ${\phi}_{y}=12.{7}^{\circ}$ and the RPM $h({x}_{2},{y}_{2})$ (

**d**) Decrypted image $\tilde{f}({x}_{1},{y}_{1})$ using the correct five security keys (${d}_{1}$, ${d}_{2}$, ${\theta}_{y}$, ${\phi}_{y}$ and $h({x}_{2},{y}_{2})$). Decrypted images using the following wrong tilt angle in the decryption system: (

**e**) ${\theta}_{y}=14.{4}^{\circ}$ and (

**f**) ${\phi}_{y}=12.{8}^{\circ}$.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Vilardy O., J.M.; Jimenez, C.J.; Torres M., C.O.
Optical Image Encryption System Using Several Tilted Planes. *Photonics* **2019**, *6*, 116.
https://doi.org/10.3390/photonics6040116

**AMA Style**

Vilardy O. JM, Jimenez CJ, Torres M. CO.
Optical Image Encryption System Using Several Tilted Planes. *Photonics*. 2019; 6(4):116.
https://doi.org/10.3390/photonics6040116

**Chicago/Turabian Style**

Vilardy O., Juan M., Carlos J. Jimenez, and Cesar O. Torres M.
2019. "Optical Image Encryption System Using Several Tilted Planes" *Photonics* 6, no. 4: 116.
https://doi.org/10.3390/photonics6040116