fNIRS for Tracking Brain Development in the Context of Global Health Projects
Abstract
:1. Introduction
2. fNIRS to Study Effects of Early Childhood Adversity
3. Current Studies Implementing fNIRS in Low- and Middle-Income Countries (LMICs)
4. Implementing fNIRS in LMICs
4.1. Equipment
4.2. Site Infrastructure
4.3. Experimental Protocols
4.4. Engagement of the Local Community
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Boas, D.A.; Elwell, C.E.; Ferrari, M.; Taga, G. Twenty years of functional near-infrared spectroscopy: Introduction for the special issue. NeuroImage 2014, 85, 1–5. [Google Scholar] [CrossRef]
- Wilcox, T.; Biondi, M. fNIRS in the developmental sciences: fNIRS in the developmental sciences. Wiley Interdiscip. Rev. Cogn. Sci. 2015, 6, 263–283. [Google Scholar] [CrossRef]
- Soltanlou, M.; Sitnikova, M.A.; Nuerk, H.-C.; Dresler, T. Applications of Functional Near-Infrared Spectroscopy (fNIRS) in Studying Cognitive Development: The Case of Mathematics and Language. Front. Psychol. 2018, 9, 277. [Google Scholar] [CrossRef]
- Altvater-Mackensen, N.; Grossmann, T. Modality-independent recruitment of inferior frontal cortex during speech processing in human infants. Cogn. Neurosci. 2018, 34, 130–138. [Google Scholar] [CrossRef]
- Arimitsu, T.; Minagawa, Y.; Yagihashi, T.; Uchida, M.O.; Matsuzaki, A.; Ikeda, K.; Takahashi, T. The cerebral hemodynamic response to phonetic changes of speech in preterm and term infants: The impact of postmenstrual age. NeuroImage Clin. 2018, 19, 599–606. [Google Scholar] [CrossRef]
- Van der Kant, A.; Biro, S.; Levelt, C.; Huijbregts, S. Negative affect is related to reduced differential neural responses to social and non-social stimuli in 5-to-8-month-old infants: A functional near-infrared spectroscopy-study. Cogn. Neurosci. 2018, 30, 23–30. [Google Scholar] [CrossRef]
- Kelsey, C.M.; Krol, K.M.; Kret, M.E.; Grossmann, T. Infants’ brain responses to pupillary changes in others are affected by race. Sci. Rep. 2019, 9, 4317. [Google Scholar] [CrossRef]
- Timeo, S.; Brigadoi, S.; Farroni, T. Perception of Caucasian and African faces in 5- to 9-month-old Caucasian infants: A functional near-infrared spectroscopy study. Neuropsychologia 2019, 126, 3–9. [Google Scholar] [CrossRef]
- De Klerk, C.C.J.M.; Hamilton, A.F.D.; Southgate, V. Eye contact modulates facial mimicry in 4-month-old infants: An EMG and fNIRS study. Cortex 2018, 106, 93–103. [Google Scholar] [CrossRef]
- De Klerk, C.C.J.M.; Bulgarelli, C.; Hamilton, A.; Southgate, V. Selective facial mimicry of native over foreign speakers in preverbal infants. J. Exp. Child Psychol. 2019, 183, 33–47. [Google Scholar] [CrossRef]
- Tuulari, J.J.; Scheinin, N.M.; Lehtola, S.; Merisaari, H.; Saunavaara, J.; Parkkola, R.; Sehlstedt, I.; Karlsson, L.; Karlsson, H.; Björnsdotter, M. Neural correlates of gentle skin stroking in early infancy. Cogn. Neurosci. 2019, 35, 36–41. [Google Scholar] [CrossRef]
- Miguel, H.O.; Lisboa, I.C.; Gonçalves, Ó.F.; Sampaio, A. Brain mechanisms for processing discriminative and affective touch in 7-month-old infants. Dev. Cogn. Neurosci. 2019, 35, 20–27. [Google Scholar] [CrossRef]
- Jönsson, E.H.; Kotilahti, K.; Heiskala, J.; Wasling, H.B.; Olausson, H.; Croy, I.; Mustaniemi, H.; Hiltunen, P.; Tuulari, J.J.; Scheinin, N.M.; et al. Affective and non-affective touch evoke differential brain responses in 2-month-old infants’. NeuroImage 2018, 169, 162–171. [Google Scholar]
- Pirazzoli, L.; Lloyd-Fox, S.; Braukmann, R.; Johnson, M.H.; Gliga, T. Hand or spoon? Exploring the neural basis of affective touch in 5-month-old infants. Cogn. Neurosci. 2019, 35, 28–35. [Google Scholar] [CrossRef]
- Hakuno, L.Y.; Pirazzoli, A.; Blasi, M.; Johnson, H.; Lloyd-Fox, S. Optical imaging during toddlerhood: Brain responses during naturalistic social interactions. Neurophotonics 2018, 5, 011020. [Google Scholar] [CrossRef]
- McDonald, N.M.; Perdue, K.L. The infant brain in the social world: Moving toward interactive social neuroscience with functional near-infrared spectroscopy. Neurosci. Biobehav. Rev. 2018, 87, 38–49. [Google Scholar] [CrossRef]
- Vanderwert, R.E.; Nelson, C.A. The use of near-infrared spectroscopy in the study of typical and atypical development. NeuroImage 2014, 85, 264–271. [Google Scholar] [CrossRef]
- Fox, S.E.; Wagner, J.B.; Shrock, C.L.; Flusberg, H.T.; Nelson, C.A. Neural Processing of Facial Identity and Emotion in Infants at High-Risk for Autism Spectrum Disorders. Front. Hum. Neurosci. 2013, 7, 89. [Google Scholar] [CrossRef] [Green Version]
- Edwards, L.A.; Wagner, J.B.; Tager-Flusberg, H.; Nelson, C.A. Differences in Neural Correlates of Speech Perception in 3 Month Olds at High and Low Risk for Autism Spectrum Disorder. J. Autism Dev. Disord. 2017, 47, 3125–3138. [Google Scholar] [CrossRef]
- Lloyd-Fox, S.; Blasi, A.; Elwell, C.E.; Charman, T.; Murphy, D.; Johnson, M.H. Reduced neural sensitivity to social stimuli in infants at risk for autism. Proc. R. Soc. B Biol. Sci. 2013, 280, 20123026. [Google Scholar] [CrossRef] [Green Version]
- Emberson, L.L.; Boldin, A.M.; Riccio, J.E.; Guillet, R.; Aslin, R.N. Deficits in Top-Down Sensory Prediction in Infants at Risk due to Premature Birth. Curr. Biol. 2017, 27, 431–436. [Google Scholar] [CrossRef]
- Imai, M.; Watanabe, H.; Yasui, K.; Kimura, Y.; Shitara, Y.; Tsuchida, S.; Takahashi, N.; Taga, G. Functional connectivity of the cortex of term and preterm infants and infants with Down’s syndrome. NeuroImage 2014, 85, 272–278. [Google Scholar] [CrossRef]
- Lloyd-Fox, S.; Blasi, A.; Pasco, G.; Gliga, T.; Jones, E.J.; Murphy, D.G.; Elwell, C.E.; Charman, T.; Johnson, M.H.; BASIS Team; et al. Cortical responses before 6 months of life associate with later autism. Eur. J. Neurosci. 2018, 47, 736–749. [Google Scholar] [CrossRef]
- Jensen, S.K.G.; Berens, A.E.; Nelson, A.C. Effects of poverty on interacting biological systems underlying child development. Lancet Child Adolesc. Health 2017, 1, 225–239. [Google Scholar] [CrossRef]
- McCoy, D.C.; Peet, E.D.; Ezzati, M.; Danaei, G.; Black, M.M.; Sudfeld, C.R.; Fawzi, W.; Fink, G. Early Childhood Developmental Status in Low- and Middle-Income Countries: National, Regional, and Global Prevalence Estimates Using Predictive Modeling. PLoS Med. 2016, 13, e1002034. [Google Scholar] [CrossRef]
- Pavlakis, A.E.; Noble, K.; Pavlakis, S.G.; Ali, N.; Frank, Y. Brain Imaging and Electrophysiology Biomarkers: Is There a Role in Poverty and Education Outcome Research? Pediatr. Neurol. 2015, 52, 383–388. [Google Scholar] [CrossRef]
- Lloyd-Fox, S.; Wu, R.; Richards, J.E.; Elwell, C.E.; Johnson, M.H. Cortical Activation to Action Perception is Associated with Action Production Abilities in Young Infants, Cereb. Cortex 2013, 25, 289–297. [Google Scholar] [CrossRef]
- Abubakar, A.; Holding, P.; van Baar, A.; Newton, C.R.J.C.; van de Vijver, F.J.R. Monitoring psychomotor development in a resourcelimited setting: An evaluation of the Kilifi Developmental Inventory. Ann. Trop. Paediatr. 2008, 28, 217–226. [Google Scholar] [CrossRef]
- Semrud-Clikeman, M.; Romero, R.A.A.; Prado, E.L.; Shapiro, E.G.; Bangirana, P.; John, C.C. Selecting measures for the neurodevelopmental assessment of children in low- and middle-income countries. Child Neuropsychol. 2016, 23, 1–42. [Google Scholar] [CrossRef]
- Azari, N.; Soleimani, F.; Vameghi, R.; Sajedi, F.; Shahshahani, S.; Karimi, H.; Kraskian, A.; Shahrokhi, A.; Teymouri, R.; Gharib, M. A Psychometric Study of the Bayley Scales of Infant and Toddler Development in Persian Language Children. Iran. J. Child Neurol. 2017, 11, 50–56. [Google Scholar]
- Milosavljevic, B.; Vellekoop, P.; Maris, H.; Halliday, D.; Drammeh, S.; Sanyang, L.; Darboe, M.K.; Elwell, C.; Moore, S.E.; Lloyd-Fox, S. Adaptation of the Mullen Scales of Early Learning for use among infants aged 5- to 24-months in rural Gambia. Dev. Sci. 2019, e12808. [Google Scholar] [CrossRef]
- Fernald, L.C.H.; Prado, E.; Kariger, P.; Raikes, A. A Toolkit for Measuring Early Childhood Development in Low- and Middle-Income Countries; The World Bank: Washington, DC, USA, 2017; p. 128. [Google Scholar]
- Lloyd-Fox, S.; Papademetriou, M.; Darboe, M.K.; Everdell, N.L.; Wegmuller, R.; Prentice, A.M.; Moore, S.E.; Elwell, C.E. Functional near infrared spectroscopy (fNIRS) to assess cognitive function in infants in rural Africa. Sci. Rep. 2014, 4, 4740. [Google Scholar] [CrossRef]
- Lloyd-Fox, S.; Begus, K.; Halliday, D.; Pirazzoli, L.; Blasi, A.; Papademetriou, M.; Darboe, M.K.; Prentice, A.M.; Johnson, M.H.; Moore, S.E.; et al. Cortical specialisation to social stimuli from the first days to the second year of life: A rural Gambian cohort. Cogn. Neurosci. 2017, 25, 92–104. [Google Scholar] [CrossRef]
- Papademetriou, M.D.; Lloyd-Fox, S.; Everdell, N.L.; Darboe, M.K.; Moore, S.E.; Prentice, A.M.; Elwell, C.E. Optical Imaging of Brain Activation in Gambian Infants. In Complement Therapeutics; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2014; Volume 812, pp. 263–269. [Google Scholar]
- Begus, K.; Lloyd-Fox, S.; Halliday, D.; Papademetriou, M.; Darboe, M.K.; Prentice, A.M.; Moore, S.E.; Elwell, C.E. Using fNIRS to Study Working Memory of Infants in Rural Africa. In Complement Therapeutics; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2016; Volume 876, pp. 273–279. [Google Scholar]
- Lloyd-Fox, S.; Blasi, A.; McCann, S.; Rozhko, M.; Katus, L.; Mason, L.; Austin, T.; Moore, S.E.; Elwell, C.E.; BRIGHT project team. Habituation and novelty detection fNIRS brain responses in 5- and 8-month-old infants: The Gambia and UK. Dev. Sci. 2019, e12817. [Google Scholar] [CrossRef]
- Perdue, K.L.; Jensen, S.K.; Kumar, S.; Richards, J.E.; Kakon, S.H.; Haque, R.; Petri, W.A., Jr.; Lloyd-Fox, S.; Elwell, C.; Nelson, C.A. Using functional near-infrared spectroscopy to assess social information processing in poor urban Bangladeshi infants and toddlers. Dev. Sci. 2019, e12839. [Google Scholar] [CrossRef]
- Lloyd-Fox, S.; Blasi, A.; Volein, A.; Everdell, N.; Elwell, C.E.; Johnson, M.H. Social Perception in Infancy: A Near Infrared Spectroscopy Study. Child Dev. 2009, 80, 986–999. [Google Scholar] [CrossRef]
- Lloyd-Fox, S.; Blasi, A.; Mercure, E.; Elwell, C.E.; Johnson, M.H. The emergence of cerebral specialization for the human voice over the first months of life. Soc. Neurosci. 2012, 7, 317–330. [Google Scholar] [CrossRef]
- Wijeakumar, S.; Kumar, A.; Reyes, L.M.D.; Tiwari, M.; Spencer, J.P. Early adversity in rural India impacts the brain networks underlying visual working memory. Dev. Sci. 2019, e12822. [Google Scholar] [CrossRef]
- Yücel, M.A.; Selb, J.J.; Huppert, T.J.; Franceschini, M.A.; Boas, D.A. Functional Near Infrared Spectroscopy: Enabling routine functional brain imaging. Curr. Opin. Biomed. Eng. 2017, 4, 78–86. [Google Scholar] [CrossRef]
- Issard, C.; Gervain, J. Variability of the hemodynamic response in infants: Influence of experimental design and stimulus complexity. Cogn. Neurosci. 2018, 33, 182–193. [Google Scholar] [CrossRef]
- Sanchez, C.E.; Richards, J.E.; Almli, C.R. Neurodevelopmental MRI brain templates for children from 2 weeks to 4 years of age. Dev. Psychobiol. 2012, 54, 77–91. [Google Scholar] [CrossRef]
- Lloyd-Fox, S.; Richards, J.E.; Blasi, A.; Murphy, D.G.M.; Elwell, C.E.; Johnson, M.H. Coregistering functional near-infrared spectroscopy with underlying cortical areas in infants. Neurophotonics 2014, 1, 025006. [Google Scholar] [CrossRef]
- Brigadoi, S.; Aljabar, P.; Kuklisova-Murgasova, M.; Arridge, S.R.; Cooper, R.J. A 4D neonatal head model for diffuse optical imaging of pre-term to term infants. NeuroImage 2014, 100, 385–394. [Google Scholar] [CrossRef]
- Collins-Jones, L.; Cooper, R.; Blasi, A.; Lloyd-Fox, S.; Kischkel, L.; McCann, S.; Mason, L.; Moore, S.; Arichi, T.; Hebden, J. Advancing Optical Methods to Reconstruct the first Images of Infant Functional Activation in Africa. In Proceedings of the 2019 OHBM Annual Meeting, Rome, Italy, 9–13 June 2019. [Google Scholar]
- Cooper, R.J.; Selb, J.; Gagnon, L.; Phillip, D.; Schytz, H.W.; Iversen, H.K.; Ashina, M.; Boas, D.A. A Systematic Comparison of Motion Artifact Correction Techniques for Functional Near-Infrared Spectroscopy. Front. Mol. Neurosci. 2012, 6, 147. [Google Scholar] [CrossRef] [Green Version]
- Brigadoi, S.; Ceccherini, L.; Cutini, S.; Scarpa, F.; Scatturin, P.; Selb, J.; Gagnon, L.; Boas, D.A.; Cooper, R.J. Motion artifacts in functional near-infrared spectroscopy: A comparison of motion correction techniques applied to real cognitive data. NeuroImage 2014, 85, 181–191. [Google Scholar] [CrossRef]
- Behrendt, H.F.; Firk, C.; Nelson, C.A.; Perdue, K.L. Motion correction for infant functional near-infrared spectroscopy with an application to live interaction data. Neurophotonics 2018, 5, 015004. [Google Scholar] [CrossRef] [Green Version]
- Reyes, L.M.D.; Bohache, K.; Wijeakumar, S.; Spencer, J.P. Evaluating motion processing algorithms for use with functional near-infrared spectroscopy data from young children. Neurophotonics 2018, 5, 025008. [Google Scholar]
- Jasińska, K.K.; Guei, S. Neuroimaging Field Methods Using Functional Near Infrared Spectroscopy (NIRS) Neuroimaging to Study Global Child Development: Rural Sub-Saharan Africa. J. Vis. Exp. 2018, 132, e57165. [Google Scholar] [CrossRef]
- Katus, L.; Hayes, N.; McCann, S.; Mason, L.; Blasi, A.; Darboe, M.K.; De Haan, M.; Moore, S.E.; Lloyd-Fox, S.; Elwell, C.E. Implementing neuroimaging and eye tracking methods to assess neurocognitive development of young infants in low- and middle-income countries. Gates Open Res. 2019, 3, 1113. [Google Scholar] [CrossRef] [Green Version]
- Richards, J.E.; Sanchez, C.; Phillips-Meek, M.; Xie, W. A database of age-appropriate average MRI templates’. NeuroImage 2016, 124, 1254–1259. [Google Scholar] [CrossRef]
- Xie, W.; Richards, J.E.; Lei, D.; Zhu, H.; Lee, K.; Gong, Q. The construction of MRI brain/head templates for Chinese children from 7 to 16 years of age. Cogn. Neurosci. 2015, 15, 94–105. [Google Scholar] [CrossRef] [Green Version]
- Pinti, P.; Aichelburg, C.; Gilbert, S.; Hamilton, A.; Hirsch, J.; Burgess, P.; Tachtsidis, I. A Review on the Use of Wearable Functional Near-Infrared Spectroscopy in Naturalistic Environments. Jpn. Psychol. Res. 2018, 60, 347–373. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blasi, A.; Lloyd-Fox, S.; Katus, L.; Elwell, C.E. fNIRS for Tracking Brain Development in the Context of Global Health Projects. Photonics 2019, 6, 89. https://doi.org/10.3390/photonics6030089
Blasi A, Lloyd-Fox S, Katus L, Elwell CE. fNIRS for Tracking Brain Development in the Context of Global Health Projects. Photonics. 2019; 6(3):89. https://doi.org/10.3390/photonics6030089
Chicago/Turabian StyleBlasi, Anna, Sarah Lloyd-Fox, Laura Katus, and Clare E. Elwell. 2019. "fNIRS for Tracking Brain Development in the Context of Global Health Projects" Photonics 6, no. 3: 89. https://doi.org/10.3390/photonics6030089
APA StyleBlasi, A., Lloyd-Fox, S., Katus, L., & Elwell, C. E. (2019). fNIRS for Tracking Brain Development in the Context of Global Health Projects. Photonics, 6(3), 89. https://doi.org/10.3390/photonics6030089