Totally Vacuum-Free Processed Crystalline Silicon Solar Cells over 17.5% Conversion Efficiency
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Florakis, A.; Janssens, T.; Posthuma, N.; Delmotte, J.; Douhard, B.; Poortmans, J.; Vandervorst, W. Simulation of the phosphorus profiles in a c-Si solar cellfabricated using POCl3 diffusion or ion implantation and annealing. Energy Procedia 2013, 38, 263–269. [Google Scholar] [CrossRef]
- Urrejola, E.; Peter, K.; Soiland, A.; Enebakk, E. POCl3 diffusion with in-situ SiO2 barrier for selective emitter multicrystalline solar grade silicon solar cells. In Proceedings of the 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, 21–25 September 2009. [Google Scholar]
- Bouhafs, D.; Moussi, A.; Boumaour, M.; Abaïdia, S.E.K.; Mahiou, L. N+ silicon solar cells emitters realized using phosphoric acid as doping source in a spray process. Thin Solid Films 2006, 510, 325–328. [Google Scholar] [CrossRef]
- Voyer, C.; Biro, D.; Wagner, K.; Benick, J.; Preu, R. Fabrication of Textured Solar Cells Using Sprayed Phosphoric Acid as the Dopant Source for the in-Line Emitter Diffusion. In Proceedings of the 21st European Photovoltaic Solar Energy Conference, Dresden, Germany, 4–8 September 2006; p. 1157. [Google Scholar]
- Lee, Y.-Y.; Ho, W.-J.; Syu, J.-K.; Lai, Q.-R.; Yu, C.-M. 17.9% Efficiency Silicon Solar Cells by Using Spin-on Films Processes. In Proceedings of the PIERS, Progress in Electromagnetics Research Symposium, Suzhou, China, 12–16 September 2011. [Google Scholar]
- Uzum, A.; Hamdi, A.; Nagashima, S.; Suzuki, S.; Suzuki, H.; Yoshiba, S.; Dhamrin, M.; Kamisako, K.; Sato, H.; Katsuma, K.; et al. Selective emitter formation processusing single screen-printed phosphorus diffusion source. Sol. Energy Mater. Sol. Cells 2013, 109, 288–293. [Google Scholar] [CrossRef]
- Richards, B.S. Comparison of TiO2 and other dielectric coatings for buried-contact solar cells: A review. Progress Photovolt. Res. Appl. 2004, 12, 253–281. [Google Scholar] [CrossRef]
- Dekkers, H.F.; Beaucarne, G.; Hiller, M.; Charifi, H.; Slaoui, A. Molecular hydrogen formation in hydrogenated silicon nitride. Appl. Phys. Lett. 2006, 89, 211914. [Google Scholar] [CrossRef]
- Aberle, A.; Hezel, R. Progress in low-temperature surface passivation of silicon solar cells using remote-plasma silicon nitride. Progress Photovolt. 1997, 5, 29–50. [Google Scholar] [CrossRef]
- Wan, Y.; McIntosh, K.R.; Thomson, A.F. Characterisation and optimisation of PECVD SiNx as an antireflection coating and passivation layer for silicon solar cells. AIP Adv. 2013, 3, 032113. [Google Scholar] [CrossRef]
- Masuko, K.; Shigematsu, M.; Hashiguchi, T.; Fujishima, D.; Kai, M.; Yoshimura, N.; Yamaguchi, T.; Ichihashi, Y.; Mishima, T.; Matsubara, N.; et al. Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell. IEEE J. Photovolt. 2014, 4, 1433–1435. [Google Scholar] [CrossRef]
- Deng, W.; Chen, D.; Xiong, Z.; Verlinden, P.J.; Dong, J.; Ye, F.; Li, H.; Zhu, H.; Zhong, M.; Yang, Y.; et al. 20.8% PERC Solar Cell on 156 mm × 156 mm P-Type Multicrystalline Silicon Substrate. IEEE J. Photovolt. 2016, 6, 3–9. [Google Scholar] [CrossRef]
- Brinker, C.J.; Harrington, M.S. Sol-Gel derived antireflective coatings for silicon. Sol. Energy Mater. 1981, 5, 159–172. [Google Scholar] [CrossRef]
- Richards, B.S. Single-Material TiO2 double-layer antireflection coatings. Sol. Energy Mater. Sol. Cells 2003, 79, 369–390. [Google Scholar] [CrossRef]
- Lien, S.Y.; Wu, D.S.; Yeh, W.C.; Liu, J.C. Tri-layer antireflection coatings (SiO2/SiO2–TiO2/TiO2) for silicon solar cells using a sol–gel technique. Sol. Energy Mater. Sol. Cells 2006, 90, 2710–2719. [Google Scholar] [CrossRef]
- Kanda, H.; Uzum, A.; Harano, N.; Yoshinaga, S.; Ishikawa, Y.; Uraoka, Y.; Fukui, H.; Harada, T.; Ito, S. Al2O3/TiO2 double layer anti-reflection coating film for crystalline silicon solar cells formed by spray pyrolysis. Energy Sci. Eng. 2016, 4, 269–276. [Google Scholar] [CrossRef]
- Uzum, A.; Kuriyama, M.; Kanda, H.; Kimura, Y.; Tanimoto, K.; Ito, S. Non-Vacuum Processed Polymer Composite Antireflection Coating Films for Silicon Solar Cells. Energies 2016, 9, 633. [Google Scholar] [CrossRef]
- Uzum, A.; Kuriyama, M.; Kanda, H.; Kimura, Y.; Tanimoto, K.; Fukui, H.; Izumi, T.; Harada, T.; Ito, S. Sprayed and Spin-Coated Multilayer Antireflection Coating Films for Nonvacuum Processed Crystalline Silicon Solar Cells. Int. J. Photoenergy 2017, 2017, 5. [Google Scholar] [CrossRef]
- Reinhardt, K.; Kern, W. (Eds.) Handbook of Silicon Wafer Cleaning Technology, 2nd ed.; William Andrew Publishing: Norwich, NY, USA, 2008. [Google Scholar]
- Koch, W. Properties and uses of ethylcellulose. Ind. Eng. Chem. 1937, 29, 687–690. [Google Scholar] [CrossRef]
- Sinton, R.A.; Cuevas, A. A Quasi-Steady-State Open-Circuit Voltage Method for Solar Cell Characterization. In Proceedings of the 16th European Photovoltaic Solar Energy Conference, Glaskow, UK, 1–5 May 2000; pp. 1152–1155. [Google Scholar]
- Wenger, H.J.; Schaefer, J.; Rosenthal, A.; Hammond, B.; Schlueter, L. Decline of the Carrisa Plains PV Power Plant: The impact of concentrating sunlight on flat plates. In Proceedings of the 22nd IEEE Photovoltaic Specialists Conference, Las Vegas, NV, USA, 7–11 October 1991; pp. 586–592. [Google Scholar]
- Rosenthal, A.L.; Lane, C.G. Field Test Results for the 6 MW Carrizo Solar Photovoltaic Power Plant. Sol. Cells 1991, 30, 563–571. [Google Scholar] [CrossRef]
- Osterwald, C.R.; Pruett, J.; Moriarty, T. Crystalline silicon short-circuit current degradation study: Initial results. In Proceedings of the 31st IEEE Photovoltaic Specialists Conference, Lake Buena Vista, FL, USA, 3–7 January 2005; pp. 1335–1338. [Google Scholar]
- Osterwald, C.R.; Anderberg, A.; Rummel, S.; Ottoson, L. Degradation Analysis of Weathered Crystalline Silicon PV Modules. In Proceedings of the 29th IEEE PV Specialists Conference, Piscataway, NJ, USA, 20–24 May 2002; pp. 1392–1395. [Google Scholar]
Cell Structure | Surface Condition | Jsc/mA·cm−2 | Voc/mV | FF/% | Rs/cm2 | Rsh/cm2 | Eff/% | Reference | |
---|---|---|---|---|---|---|---|---|---|
AI/p+/p−Si/n+/Ag | Flat | Best | 27.53 | 586.5 | 72.0 | 0.67 | 496.5 | 11.63 | |
Average | 27.75 | 587.4 | 62.6 | 1.81 | 315.2 | 10.18 | |||
Texture | Best | 34.15 | 583.3 | 70.5 | 0.28 | 480.3 | 14.03 | [16] | |
Average | 33.47 | 588.5 | 70.2 | 0.33 | 336.9 | 13.83 | |||
AI/p+/p−Si/n+/TiO2/Ag | Texture | Best | 35.30 | 581.0 | 74.1 | 0.40 | 655 | 15.20 | [18] |
AI/p+/p−Si/n+/TiO2/ZrO2/Ag | Texture | Best | 37.20 | 583.0 | 73.4 | 0.45 | 535 | 15.90 | |
AI/p+/p−Si/n+/TiO2/AI2O3/Ag | Flat | Best | 35.17 | 593.8 | 71.2 | 0.85 | 12672 | 14.87 | [16] |
Average | 34.31 | 596.2 | 70.6 | 0.75 | 51799 | 14.44 | |||
Texture | Best | 37.21 | 594.4 | 72.5 | 0.58 | 11776 | 16.03 | ||
Average | 36.99 | 590.2 | 71.1 | 0.52 | 9847 | 15.54 | |||
AI/p+/p−Si/n+/SiO2/TiO2/Ag | Texture | Best | 38.10 | 596.2 | 77.1 | 0.51 | 8067 | 17.51 | |
Average | 38.08 | 591.9 | 76.3 | 0.59 | 39739 | 17.22 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uzum, A.; Kanda, H.; Fukui, H.; Izumi, T.; Harada, T.; Ito, S. Totally Vacuum-Free Processed Crystalline Silicon Solar Cells over 17.5% Conversion Efficiency. Photonics 2017, 4, 42. https://doi.org/10.3390/photonics4030042
Uzum A, Kanda H, Fukui H, Izumi T, Harada T, Ito S. Totally Vacuum-Free Processed Crystalline Silicon Solar Cells over 17.5% Conversion Efficiency. Photonics. 2017; 4(3):42. https://doi.org/10.3390/photonics4030042
Chicago/Turabian StyleUzum, Abdullah, Hiroyuki Kanda, Hidehito Fukui, Taichiro Izumi, Tomitaro Harada, and Seigo Ito. 2017. "Totally Vacuum-Free Processed Crystalline Silicon Solar Cells over 17.5% Conversion Efficiency" Photonics 4, no. 3: 42. https://doi.org/10.3390/photonics4030042
APA StyleUzum, A., Kanda, H., Fukui, H., Izumi, T., Harada, T., & Ito, S. (2017). Totally Vacuum-Free Processed Crystalline Silicon Solar Cells over 17.5% Conversion Efficiency. Photonics, 4(3), 42. https://doi.org/10.3390/photonics4030042