# Multi-Scale Simulation for Transient Absorption Spectroscopy under Intense Few-Cycle Pulse Laser

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

## 3. Numerical Results and Discussion

## 4. Conclusions

## Acknowledgments

## Conflicts of Interest

## References

- Zhao, K.; Zhang, Q.; Chini, M.; Wu, Y.; Wang, X.; Chang, Z. Tailoring a 67 attosecond pulse through advantageous phase-mismatch. Opt. Lett.
**2012**, 37, 3891–3893. [Google Scholar] [CrossRef] [PubMed] - Hentschel, M.; Kienberger, R.; Spielmann, C.; Reider, G.A.; Milosevic, N.; Brabec, T.; Corkum, P.; Heinzmann, U.; Drescher, M.; Krausz, F. Attosecond metrogy. Nature
**2001**, 414, 509–513. [Google Scholar] [CrossRef] [PubMed] - Hirori, H.; Doi, A.; Blanchard, F.; Tanaka, K. Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO
_{3}. Appl. Phys. Lett.**2011**, 98, 091106. [Google Scholar] [CrossRef] - Chin, H.A.; Calderon, G.O.; Kono, J. Extreme Midinfrared Nonlinear Optics in Semiconductors. Phys. Rev. Lett.
**2001**, 86, 3292–3295. [Google Scholar] [CrossRef] [PubMed] - Hirori, H.; Shinokita, K.; Shirai, M.; Tani, S.; Kadoya, Y.; Tanaka, K. Extraordinary carrier multiplication gated by a picosecond electric field pulse. Nat. Commun.
**2011**, 2, 594. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Schiffrin, A.; Paasch-Colberg, T.; Karpowicz, N.; Apalkov, V.; Gerster, D.; Mühlbrandt, S.; Korbman, M.; Reichert, J.; Schultze, M.; Holzner, S.; et al. Optical-filed-induced current in dielectrics. Nature
**2013**, 493, 70–73. [Google Scholar] [CrossRef] [PubMed] - Schultze, M.; Bothschafter, E.M.; Sommer, A.; Holzner, S.; Schweinberger, W.; Fiess, M.; Hofstetter, M.; Kienberger, R.; Apalkov, V.; Yakovlev, V.S.; et al. Controlling dielectrics with the electric field of light. Nature
**2013**, 493, 75–82. [Google Scholar] [CrossRef] [PubMed] - Nobelli, F.; Fausti, D.; Giusti, F.; Parmigiani, F.; Hoffmann, M. Mixed regime of light-matter interaction revealed by phase sensitive measurements of the dynamical Franz-Keldysh effect. Sci. Rep.
**2013**, 3, 1227. [Google Scholar] - Schultze, M.; Ramasesha, K.; Pemmaraju, C.D.; Sato, S.A.; Whitmore, D.; Gandman, A.; Prell, J.S.; Borja, L.J.; Prendergast, D.; Yabana, K.; et al. Attosecond band-gap dynamics in silicon. Science
**2014**, 346, 1348–1352. [Google Scholar] [CrossRef] [PubMed] - Franz, W. Einfluß eines elektrischen Feldes auf eine optische Absorptionskante. Z. Naturforsch. A
**1958**, 13, 484–489. [Google Scholar] [CrossRef] - Keldysh, V.L. Behaviour of Non-Metallic Crystals in Strong Electric Fields. Sov. Phys. JETP
**1958**, 6, 763–770. [Google Scholar] - Tharmalingam, K. Optical Absorption in the Presence of a Uniform Field. Phys. Rev.
**1963**, 130, 2204–2206. [Google Scholar] [CrossRef] - Seraphin, O.B.; Hess, B.R. Franz-Keldysh Effect above the Fundamental Edge in Germanium. Phys. Rev. Lett.
**1965**, 14, 138–140. [Google Scholar] [CrossRef] - Nahory, E.R.; Shay, L.J. Reflectance Modulation by the Surface Field in GaAs. Phys. Rev. Lett.
**1968**, 21, 1569–1571. [Google Scholar] [CrossRef] - Shen, H.; Dutta, M. Franz-Keldysh oscillations in modulation spectroscopy. J. Appl. Phys.
**1995**, 78, 2151–2176. [Google Scholar] [CrossRef] - Wahlstrand, K.J.; Sipe, E.J. Independent-particle theory of the Franz-Keldysh effect including interband coupling: Application to calculation of electroabsorption in GaAs. Phys. Rev. B
**2010**, 82, 075206. [Google Scholar] [CrossRef] - Duque-Gomez, F.; Sipe, E.J. The Franz-Keldysh effect revisited: Electroabsorption including interband coupling and excitonic effects. J. Phys. Chem. Solids
**2015**, 76, 138–152. [Google Scholar] [CrossRef] - Yacoby, Y. High-frequency Franz-Keldysh Effect. Phys. Rev.
**1968**, 169, 610–619. [Google Scholar] [CrossRef] - Jauho, A.P.; Johnsen, K. Dynamical Franz-Keldysh effect. Phys. Rev. Lett.
**1996**, 76, 4576–4579. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Nordstrom, B.K.; Johnsen, K.; Allen, S.J.; Jauho, A.-P.; Birnir, B.; Kono, J.; Noda, T.; Akiyama, H.; Sakaki, H. Excitonic Dynamical Franz-Keldysh Effect. Phys. Rev. Lett.
**1998**, 81, 457–460. [Google Scholar] [CrossRef] [Green Version] - Srivastava, A.; Srivastava, R.; Wang, J.; Kono, J. Laser-Induced Above-Band-Gap Transparency in GaAs. Phys. Rev. Lett.
**2004**, 93, 157401. [Google Scholar] [CrossRef] [PubMed] - Mizumoto, Y.; Kayanuma, Y.; Srivastava, A.; Kono, J.; Chin, H.A. Dressed-band theory for semiconductors in a high-intensity infrared laser field. Phys. Rev. B
**2006**, 74, 045216. [Google Scholar] [CrossRef] - Ghimire, S.; DiChiara, D.A.; Sistrunk, E.; Szafruga, B.U.; Agostini, P.; DiMauro, F.L.; Reis, A.D. Redshift in the Optical Absorption of ZnO Single Crystals in the Presence of an Intense Midinfrared Laser Field. Phys. Rev. Lett.
**2011**, 107, 167407. [Google Scholar] [CrossRef] [PubMed] - Otobe, T.; Shinohara, Y.; Sato, A.S.; Yabana, K. Femtosecond time-resolved dynamical Franz-Keldysh effect. Phys. Rev. B
**2016**, 93, 045124. [Google Scholar] [CrossRef] - Otobe, T. Time-resolved dynamical Franz-Keldysh effect produced by an elliptically polarized laser. Phys. Rev. B
**2016**, 94, 165152. [Google Scholar] [CrossRef] - Lucchini, M.; Sato, A.S.; Ludwig, A.; Herrmann, J.; Volkov, M.; Kasmi, L.; Shinohara, Y.; Yabana, K.; Gallmann, L.; Keller, U. Attosecond dynamical Franz-Keldsh effect in polycrystalline diamond. Science
**2016**, 353, 916–919. [Google Scholar] [CrossRef] [PubMed] - Hirori, H.; Uchida, K.; Tanaka, K.; Otobe, T.; Mochizuki, T.; Kim, C.; Yoshita, M.; Akiyama, H.; Pfeiffer, L.N.; West, K.W. Time-resolved observation of dynamical Franz-Keldysh effect under coherent multi-cycle terahertz pulses. In Proceedings of the JSAP-OSA Joint Symposia 2015, Nagoya, Japan, 13–16 September 2015.
- Otobe, T.; Yamagiwa, M.; Iwata, J.-I.; Yabana, K.; Nakatsukasa, T.; Bertsch, F.G. First-principles electron dynamics simulation for optical breakdown of dielectrics under an intense laser field. Phys. Rev. B
**2008**, 77, 165104. [Google Scholar] [CrossRef] - Bertsch, F.G.; Iwata, J.-I.; Rubio, A.; Yabana, K. Real-space, real-time method for the dielectric function. Phys. Rev. B
**2000**, 62, 7998–8002. [Google Scholar] [CrossRef] - Yabana, K.; Sugiyama, T.; Shinohara, Y.; Otobe, T.; Bertsch, F.G. Time-dependent density functional theory for strong electromagnetic field in crystalline solids. Phys. Rev. B
**2012**, 85, 045134. [Google Scholar] [CrossRef] - Sato, A.S.; Yabana, K.; Shinohara, Y.; Otobe, T.; Lee, K.-M.; Bertsch, F.G. Time-dependent density functional theory of high-intensity short-pulse laser irradiation on insulators. Phys. Rev. B
**2015**, 92, 205413. [Google Scholar] [CrossRef] - Perdew, P.J.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B
**1992**, 45, 13244–13249. [Google Scholar] [CrossRef] - Becke, D.A.; Johnson, R.E. A simple effective potential for exchange. J. Chem. Phys.
**2006**, 124, 221101. [Google Scholar] [CrossRef] [PubMed] - Tran, F.; Blaha, P. Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential. Phys. Rev. Lett.
**2009**, 102, 226401. [Google Scholar] [CrossRef] [PubMed] - Troullier, N.; Martins, L.J. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B
**1991**, 43, 1993–2006. [Google Scholar] [CrossRef] - Kleinman, L.; Bylander, M.D. Efficacious Form for Model Pseudopotentials. Phys. Rev. Lett.
**1982**, 48, 1425–1428. [Google Scholar] [CrossRef]

**Figure 1.**The laser field of the pump (blue-dashed line) and probe (red-solid line) as the function of the position from the surface. (

**a**) Incidental laser fields at time 0 fs. (

**b**) Transmitted and reflected laser fields at time 26.6 fs.

**Figure 2.**Change of the (

**a**) transmission, (

**b**) reflectivity, and (

**c**) absorption of the probe pulse. Positive value (negative value) filled by red (blue). The vertical solid line presents the optical band gap.

**Figure 3.**The laser field amplitude is shown in (

**a**). Time-energy map of the (

**b**) $\Delta T$, (

**c**) $\Delta R$, and (

**d**) $\Delta R$ under the pump laser intensity of $1\times {10}^{11}$ W/cm${}^{2}$. The time 0 is set to the peak of the laser intensity at diamond surface. The vertical solid lines present the peak of the field amplitude.

**Figure 4.**The laser field amplitude is shown in (

**a**). Time-energy map of the (

**b**) $\Delta T$, (

**c**) $\Delta R$, and (

**d**) $\Delta Ab$ under the pump laser intensity of $4\times {10}^{11}$ W/cm${}^{2}$. The time 0 is set to the peak of the laser intensity at diamond surface.

**Figure 5.**Exchange-correlation potential dependence on Tr-DFKE for (

**a**) $\Delta T$, (

**b**) $\Delta R$, and (

**c**) $\Delta Ab$. The pump-probe time-delay is same as Figure 1. Thick solid lines represent the mBJ potential and thin solid lines represent the LDA potential. Dashed lines represent the independent particle model. The vertical thick (thin) solid lines indicate the calculated optical band gap by mBJ (LDA) potential.

© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Otobe, T.
Multi-Scale Simulation for Transient Absorption Spectroscopy under Intense Few-Cycle Pulse Laser. *Photonics* **2016**, *3*, 63.
https://doi.org/10.3390/photonics3040063

**AMA Style**

Otobe T.
Multi-Scale Simulation for Transient Absorption Spectroscopy under Intense Few-Cycle Pulse Laser. *Photonics*. 2016; 3(4):63.
https://doi.org/10.3390/photonics3040063

**Chicago/Turabian Style**

Otobe, Tomohito.
2016. "Multi-Scale Simulation for Transient Absorption Spectroscopy under Intense Few-Cycle Pulse Laser" *Photonics* 3, no. 4: 63.
https://doi.org/10.3390/photonics3040063