Constant Matrix Element Approximation to Time-Resolved Angle-Resolved Photoemission Spectroscopy
Abstract
:1. Introduction
2. Results
2.1. Formalism for the TR-ARPES Response in a Gauge
2.2. Gauge Invariance of the TR-ARPES Signal
2.3. Constant Matrix-Element Approximation
3. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
TR-ARPES | time-resolved angle-resolved photoemission spectroscopy |
TR-PES | time-resolved photoemission spectroscopy |
LEED | Low-energy electron diffraction |
TRL | time-reversed LEED |
References
- Perfetti, L.; Loukakos, P.A.; Lisowski, M.; Bovensiepen, U.; Berger, H.; Biermann, S.; Cornaglia, P.S.; Georges, A.; Wolf, M. Time Evolution of the Electronic Structure of 1T-TaS2 through the Insulator-Metal Transition. Phys. Rev. Lett. 2006, 97, 067402. [Google Scholar] [CrossRef] [PubMed]
- Perfetti, L.; Loukakos, P.A.; Lisowski, M.; Bovensiepen, U.; Wolf, M.; Berger, H.; Biermann, S.; Georges, A. Femtosecond dynamics of electronic states in the Mott insulator 1T-TaS2 by time resolved photoelectron spectroscopy. New J. Phys. 2008, 10, 053019. [Google Scholar] [CrossRef]
- Rohwer, T.; Hellmann, S.; Wiesenmayer, M.; Sohrt, C.; Stange, A.; Slomski, B.; Carr, A.; Liu, Y.; Avila, L.M.; Kalläne, M.; et al. Collapse of long-range charge order tracked by time-resolved photoemission at high momenta. Nature 2011, 471, 490–493. [Google Scholar] [CrossRef] [PubMed]
- Hellmann, S.; Rohwer, T.; Kalläne, M.; Hanff, K.; Sohrt, C.; Stange, A.; Carr, A.; Murnane, M.M.; Kapteyn, H.C.; Kipp, L.; et al. Time-domain classification of charge-density-wave insulators. Nat. Commun. 2012, 3, 1069. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, F.; Kirchmann, P.S.; Bovensiepen, U.; Moore, R.G.; Rettig, L.; Krenz, M.; Chu, J.-H.; Ru, N.; Perfetti, L.; Lu, D.H.; et al. Transient Electronic Structure and Melting of a Charge Density Wave in TbTe3. Science 2008, 321, 1649–1652. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, F.; Kirchmann, P.S.; Bovensiepen, U.; Moore, R.G.; Chu, J.-H.; Lu, D.H.; Rettig, L.; Wolf, M.; Fisher, I.R.; Shen, Z.-X. Ultrafast electron dynamics in the charge density wave material TbTe3. New J. Phys. 2011, 13, 063022. [Google Scholar] [CrossRef]
- Rettig, L.; Cortes, R.; Chu, J.-H.; Fisher, I.R.; Schmitt, F.; Kirchmann, P.S.; Moore, R.G.; Shen, Z.-X.; Wolf, M.; Bovensiepen, U. Persistent order due to transiently enhanced nesting in an electronically excited charge density wave. Nat. Commun. 2016, 7, 10459. [Google Scholar] [CrossRef] [PubMed]
- Stojchevska, L.; Vaskivskyi, I.; Mertelj, T.; Kusar, P.; Svetin, D.; Brazovskii, S.; Mihailovic, D. Ultrafast Switching to a Stable Hidden Quantum State in an Electronic Crystal. Science 2014, 344, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Vaskivskyi, I.; Gospodaric, J.; Brazovskii, S.; Svetin, D.; Sutar, P.; Goreshnik, E.; Mihailovic, I.A.; Mertelj, T.; Mihailovic, D. Controlling the metal-to-insulator relaxation of the metastable hidden quantum state in 1T-TaS2. Sci. Adv. 2015, 1, e1500168. [Google Scholar] [CrossRef] [PubMed]
- Graf, J.; Jozwiak, C.; Smallwood, C.L.; Eisaki, H.; Kaindl, R.A.; Lee, D.-H.; Lanzara, A. Nodal quasiparticle meltdown in ultrahigh-resolution pump-probe angle-resolved photoemission. Nat. Phys. 2011, 7, 805–809. [Google Scholar] [CrossRef]
- Smallwood, C.L.; Hinton, J.P.; Jozwiak, C.; Zhang, W.; Koralek, J.D.; Eisaki, H.; Lee, D.-H.; Orenstein, J.; Lanzara, A. Tracking Cooper Pairs in a Cuprate Superconductor by Ultrafast Angle-Resolved Photoemission. Science 2012, 336, 1137–1139. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Hwang, C.; Smallwood, C.L.; Miller, T.L.; Affeldt, G.; Kurashima, K.; Jozwiak, C.; Eisaki, H.; Adachi, T.; Koike, Y.; et al. Ultrafast quenching of electron-boson interaction and superconducting gap in a cuprate superconductor. Nat. Commun. 2014, 5, 4959. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.L.; Sobota, J.A.; Leuenberger, D.; He, Y.; Hashimoto, M.; Lu, D.H.; Eisaki, H.; Kirchmann, P.S.; Shen, Z.-X. Inequivalence of Single-Particle and Population Lifetimes in a Cuprate Superconductor. Phys. Rev. Lett. 2015, 114, 247001. [Google Scholar] [CrossRef] [PubMed]
- Rameau, J.D.; Freutel, S.; Sentef, M.A.; Kemper, A.F.; Freericks, J.K.; Avigo, I.; Ligges, M.; Rettig, L.; Yoshida, Y.; Eisaki, H.; et al. Energy dissipation in the time domain governed by bosons in a correlated material. arXiv, 2015; arXiv:1505.07055. [Google Scholar]
- Rettig, L.; Cortés, R.; Jeevan, H.S.; Gegenwart, P.; Wolf, T.; Fink, J.; Bovensiepen, U. Electron-phonon coupling in 122 Fe pnictides analyzed by femtosecond time-resolved photoemission. New J. Phys. 2013, 15, 083023. [Google Scholar] [CrossRef]
- Wegkamp, D.; Herzog, M.; Xian, L.; Gatti, M.; Cudazzo, P.; McGahan, C.L.; Marvel, R.E.; Haglund, R.F., Jr.; Rubio, A.; Wolf, M.; et al. Instantaneous Band Gap Collapse in Photoexcited Monoclinic VO2 due to Photocarrier Doping. Phys. Rev. Lett. 2014, 113, 216401. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Steinberg, H.; Jarillo-Herrero, P.; Gedik, N. Observation of Floquet-Bloch States on the Surface of a Topological Insulator. Science 2013, 342, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Freericks, J.K.; Krishnamurthy, H.R.; Prushke, T. Theoretical description of time-resolved photoemission spectroscopy: Application to pump-probe experiments. Phys. Rev. Lett. 2009, 102, 136401. [Google Scholar] [CrossRef] [PubMed]
- Freericks, J.K.; Krishnamurthy, H.R.; Sentef, M.A.; Devereaux, T.P. Gauge invariance in the theoretical description of time-resolved angle-resolved pump/probe photoemission spectroscopy. Phys. Scri. 2015, 2015, 014012. [Google Scholar] [CrossRef]
- Bertoncini, R.; Jauho, A.P. Gauge-invariant formulation of the intracollisional field effect including collisional broadening. Phys. Rev. B 1991, 44, 3655–3664. [Google Scholar] [CrossRef]
- Wigner, E. On the Quantum Correction For Thermodynamic Equilibrium. Phys. Rev. 1932, 40, 749–759. [Google Scholar] [CrossRef]
- Peierls, R.E. Zur Theorie des Diamagnetismus von Leitungselektronen. Z. Phys. 1933, 80, 763–791. [Google Scholar] [CrossRef]
- Shen, W.; Ge, Y.; Liu, A.Y.; Krishnamurthy, H.R.; Devereaux, T.P.; Freericks, J.K. Nonequilibrium “melting” of a charge density wave insulator via an ultrafast laser pulse. Phys. Rev. Lett. 2014, 112, 176404. [Google Scholar] [CrossRef] [PubMed]
- Fregoso, B.M.; Wang, Y.H.; Gedik, N.; Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 2013, 88, 155129. [Google Scholar] [CrossRef]
- Bochner, S. Vorlesungen über Fouriersche Integrale; Akademische Verlagsgesellschaft: Leipzig, Germany, 1932. [Google Scholar]
- Sentef, M.A.; Claassen, M.; Kemper, A.F.; Moritz, B.; Oka, T.; Freericks, J.K.; Devereaux, T.P. Theory of Floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Commun. 2015, 6, 7047. [Google Scholar] [CrossRef] [PubMed]
- Kolodrubetz, M.; Fregoso, B.M.; Moore, J. Non-adiabatic bulk-surface oscillations in driven topological insulators. arXiv, 2016; arXiv:1606.03459. [Google Scholar]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freericks, J.K.; Krishnamurthy, H.R. Constant Matrix Element Approximation to Time-Resolved Angle-Resolved Photoemission Spectroscopy. Photonics 2016, 3, 58. https://doi.org/10.3390/photonics3040058
Freericks JK, Krishnamurthy HR. Constant Matrix Element Approximation to Time-Resolved Angle-Resolved Photoemission Spectroscopy. Photonics. 2016; 3(4):58. https://doi.org/10.3390/photonics3040058
Chicago/Turabian StyleFreericks, James K., and H. R. Krishnamurthy. 2016. "Constant Matrix Element Approximation to Time-Resolved Angle-Resolved Photoemission Spectroscopy" Photonics 3, no. 4: 58. https://doi.org/10.3390/photonics3040058
APA StyleFreericks, J. K., & Krishnamurthy, H. R. (2016). Constant Matrix Element Approximation to Time-Resolved Angle-Resolved Photoemission Spectroscopy. Photonics, 3(4), 58. https://doi.org/10.3390/photonics3040058