# Single Microwave Photon Detection with a Trapped Electron

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Basics of the Geonium Chip Planar Penning Trap

#### 2.1. Overview of the Experimental Setup

#### 2.2. Detection of the Trapped Electron’s Axial Motion

- The detection is non destructive: the axial frequency can be monitored continuously, without losing the trapped particle [19].
- The measurement of ${\omega}_{z}$ occurs with the axial motion being in thermal equilibrium with the LC resonator, typically at 4 K or eventually even at higher temperatures [23].
- The detection of the axial motion leaves the electron’s cyclotron quantum state unaffected [5]. Thus, while the axial motion is in thermal equilibrium with the LC resonator at 4 K, the cyclotron quantum state can be in thermal equilibrium with the 80 mK temperature provided by the ADR.
- While ${\omega}_{z}$ and the LC circuit must be resonantly coupled (see Figure 2b), the value of the trapping magnetic field, and therefore of ${\omega}_{p}$, can be freely chosen without affecting the detection of the axial motion.
- The frequency ${\omega}_{z}$ can be measured with an accuracy of 1 Hz in around 5 s. This is the lapse required to measure an FFT spectrum of 1 Hz resolution (∼1 s each) and average it for a good signal-to-noise ratio. As explained in Section 5, such long measurement time would not allow for high quantum efficiency in MW photon detection. However, frequency variations $\mathrm{\Delta}{\omega}_{z}$ can be determined substantially faster, by recording the phase evolution of the axial motion but without waiting for a full $2\pi $ oscillation [26]. This will permit very rapid MW photon detection, as detailed in Section 5.

## 3. Detection of Microwave Photons with a Trapped Electron

#### 3.1. Interaction of a Cyclotron Quantum Harmonic Oscillator with an Itinerant Microwave

#### 3.2. Dynamics of Two Coupled Quantum Harmonic Oscillators

#### 3.3. Principle of Microwave Photon Detection: The Continuous Stern-Gerlach Effect

#### 3.4. Generation of a Magnetic Bottle in the Geonium Chip

#### 3.5. Quantum Non Demolition Photon Detection

## 4. Quantum Efficiency of MW Photon Detection by a Single Trapped Electron

#### 4.1. Electric Field Strength of a Single Itinerant Photon Propagating along a CPW Transmission-Line

#### 4.2. Probability of MW Photon Absorption by the Quantum Cyclotron Oscillator

#### Characteristic Admittance of the Trapped Electron

#### 4.3. Internal Quantum Efficiency of Microwave Photon Detection

## 5. Speed of Quantum Jump Detection versus Cyclotron Radiative Lifetime

#### 5.1. Quantum Cyclotron Radiative Lifetime in a CPW Transmission-Line

#### 5.2. Measurement Time of $\mathrm{\Delta}{\omega}_{z}$

## 6. Comparison with Other Single Microwave Photon Detectors

## 7. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## Abbreviations

MDPI | Multidisciplinary Digital Publishing Institute |

ADR | Adiabatic Demagnetisation Refrigerator |

QND | Quantum Non Demolition |

MW | Microwave |

EM | Electromagnetic |

CPW | Coplanar-Waveguide |

FFT | Fast Fourier Transform |

EDM | Electric Dipole Moment |

CPB | Cooper Pair Box |

## References

- Manninen, A.J.; Kemppinen, A.; Lehtinen, J.; Mykkänen, E.; Amato, G.; Enrico, E.; Lacquaniti, V.; Kataoka, M.; Lindström, T.; Dolata, R.; et al. Towards measurement and control of single-photon microwave radiation on chip. In Proceedings of the 2015 1st URSI Atlantic Radio Science Conference (URSI AT-RASC), Gran Canaria, Spain, 16–24 May 2015; p. 1.
- Romero, G.; García-Ripoll, J.J.; Solano, E. Microwave Photon Detector in Circuit QED. Phys. Rev. Lett.
**2009**, 102, 173602. [Google Scholar] [CrossRef] [PubMed] - Peropadre, B.; Romero, G.; Johansson, G.; Wilson, C.M.; Solano, E.; García-Ripoll, J.J. Approaching perfect microwave photodetection in circuit QED. Phys. Rev. A
**2011**, 84, 063834. [Google Scholar] [CrossRef] - Sathyamoorthy, S.R.; Stace, T.M.; Johansson, G. Detecting itinerant single microwave photons. Comptes Rendus Physique
**2016**, 17, 756–765. [Google Scholar] [CrossRef] - Peil, S.; Gabrielse, G. Observing the Quantum Limit of an Electron Cyclotron: QND Measurements of Quantum Jumps between Fock States. Phys. Rev. Lett.
**1999**, 83, 1287–1290. [Google Scholar] [CrossRef] - Ciaramicoli, G.; Marzoli, I.; Tombesi, P. Scalable quantum processor with trapped electrons. Phys. Rev. Lett.
**2003**, 91, 017901. [Google Scholar] [CrossRef] [PubMed] - Ciaramicoli, G.; Marzoli, I.; Tombesi, P. Trapped electrons in vacuum for a scalable quantum processor. Phys. Rev. A
**2004**, 70, 032301. [Google Scholar] [CrossRef] - Lamata, L.; Porras, D.; Cirac, J.I.; Goldman, J.; Gabrielse, G. Towards electron-electron entanglement in Penning traps. Phys. Rev. A
**2010**, 81, 022301. [Google Scholar] [CrossRef] - Ciaramicoli, G.; Marzoli, I.; Tombesi, P. Quantum spin models with electrons in Penning traps. Phys. Rev. A
**2008**, 78, 012338. [Google Scholar] [CrossRef] - Dehmelt, H.G. Experiments with an isolated subatomic particle at rest. Rev. Mod. Phys.
**1990**, 62, 525. [Google Scholar] [CrossRef] - Verdú, J. Theory of the coplanar waveguide Penning trap. New J. Phys.
**2011**, 13, 113029. [Google Scholar] [CrossRef] - Pinder, J.; Verdú, J. A planar Penning trap with tunable dimensionality of the trapping potential. Int. J. Mass Spectrom.
**2013**, 356, 49–59. [Google Scholar] [CrossRef] - Thompson, R.C.; Donnellan, S.; Crick, D.R.; Segal, D.M. Applications of laser cooled ions in a Penning trap. J. Phys. B At. Mol. Opt. Phys.
**2009**, 42, 154003. [Google Scholar] [CrossRef] - Xian, F.; Hendrickson, C.; Marshall, A. High resolution mass spectrometry. Anal. Chem.
**2012**, 84, 708–719. [Google Scholar] [CrossRef] [PubMed] - Verdú, J. Ion Trap. U.S. Patent US 8,362,423 B1, 29 January 2013. [Google Scholar]
- Verdú, J. Ion Trap. WO Patent WO 2,013,041,615 A3, 10 May 2013. [Google Scholar]
- Kretzschmar, M. Theory of the elliptical Penning trap. Int. J. Mass Spectrom.
**2008**, 275, 21–33. [Google Scholar] [CrossRef] - Bartlett, J.; Hardy, G.; Hepburn, I. Performance of a fast response miniature Adiabatic Demagnetisation Refrigerator using a single crystal tungsten magnetoresistive heat switch. Cryogenics
**2015**, 72, 111–121. [Google Scholar] [CrossRef] - Dehmelt, H.G.; Walls, F.L. Bolometric technique for the rf spectroscopy of stored ions. Phys. Rev. Lett.
**1968**, 21, 127–131. [Google Scholar] [CrossRef] - Al-Rjoub, A.; Verdú, J. Electronic detection of a single particle in a coplanar-waveguide Penning trap. Appl. Phys. B
**2012**, 107, 955–964. [Google Scholar] [CrossRef] - Jefferts, S.R.; Heavner, T.; Hayes, P.; Dunn, G.H. Superconducting resonator and a cryogenic GaAs field-effect transistor amplifier as a single-ion detection system. Rev. Sci. Instrum.
**1993**, 64, 737–740. [Google Scholar] [CrossRef] - Ulmer, S.; Blaum, K.; Kracke, H.; Mooser, A.; Quint, W.; Rodegheri, C.; Walz, J. A cryogenic detection system at 28.9 MHz for the non-destructive observation of a single proton at low particle energy. Nucl. Instrum. Methods Phys. Res. Sect. A
**2013**, 705, 55–60. [Google Scholar] [CrossRef] - Djekic, S.; Alonso, J.; Kluge, H.J.; Quint, W.; Stahl, S.; Valenzuela, T.; Verdú, J.; Vogel, M.; Werth, G. Temperature measurement of a single ion in a Penning trap. Eur. Phys. J. D
**2004**, 31, 451–457. [Google Scholar] [CrossRef] - Verdú, J.; Alonso, J.; Djekic, S.; Kluge, H.J.; Quint, W.; Stahl, S.; Valenzuela, T.; Vogel, M.; Werth, G. Determination of the g-factor of single hydrogen-like ions by mode coupling in a Penning trap. Physica Scripta
**2004**, T112, 68. [Google Scholar] [CrossRef] - Cornell, E.A.; Weisskoff, R.M.; Boyce, K.R.; Pritchard, D.E. Mode coupling in a Penning trap: π pulses and a classical avoided crossing. Phys. Rev. A
**1990**, 41, 312–315. [Google Scholar] [CrossRef] [PubMed] - Stahl, S.; Alonso, J.; Djekić, S.; Kluge, H.J.; Quint, W.; Verdú, J.; Vogel, M. Phase-sensitive measurement of trapped particle motions. J. Phys. B At. Mol. Opt. Phys.
**2005**, 38, 297–304. [Google Scholar] [CrossRef] - Brown, L.S.; Gabrielse, G. Geonium theory: Physics of a single electron or ion in a Penning trap. Rev. Mod. Phys.
**1986**, 58, 233–311. [Google Scholar] [CrossRef] - Pozar, D.M. Microwave Engineering; Wiley and Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Peil, E. Quantum Jumps between Fock States of an Ultracold Electron Cyclotron Oscillator. Ph.D. Thesis, Harvard University, Cambridge, MA, USA, 1999. [Google Scholar]
- Estes, L.E.; Keil, T.H.; Narducci, L.M. Quantum-Mechanical Description of Two Coupled Harmonic Oscillators. Phys. Rev.
**1968**, 175, 286–299. [Google Scholar] [CrossRef] - Dehmelt, H.G. Continuous Stern-Gerlach effect: Principle and idealized apparatus. Proc. Natl. Acad. Sci. USA
**1986**, 83, 2291–2294. [Google Scholar] [CrossRef] [PubMed] - Hermanspahn, N.; Häffner, H.; Kluge, H.J.; Quint, W.; Stahl, S.; Verdú, J.; Werth, G. Observation of the continuous Stern-Gerlach effect on an electron bound in an atomic Ion. Phys. Rev. Lett.
**2000**, 84, 427–430. [Google Scholar] [CrossRef] [PubMed] - Lindell, I.V. On the “quasi”-TEM modes in inhomogeneous multiconductor transmission lines. IEEE Trans. Microwave Theory Techn.
**1981**, MTT-29, 812. [Google Scholar] [CrossRef] - Simons, R.N.; Arora, R. Coupled Slot Line field components. IEEE Trans. Microw. Theory Techn.
**1982**, MTT-30, 1094. [Google Scholar] [CrossRef] - Wadell, B.C. Transmission Line Design Handbook; Artech House: Norwood, MA, USA, 1991. [Google Scholar]
- Sakurai, J.J. Modern Quantum Mechanics; Addison-Wesley Publishing Company: Reading, MA, USA, 1985. [Google Scholar]
- Crimin, F.; Sussex University, Brighton, UK. Private Communication, 2016.
- Krupka, J.; Derzakowski, K.; Tobar, M.; Hartnett, J.; Geyer, R.G. Complex permittivity of some ultralow loss dielectric crystals at cryogenic temperatures. Meas. Sci. Technol.
**1999**, 10, 387–392. [Google Scholar] [CrossRef] - Blais, A.; Huang, R.S.; Wallraff, A.; Girvin, S.M.; Schoelkopf, R.J. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A
**2004**, 69, 062320. [Google Scholar] [CrossRef] - Wallraff, A.; Schuster, D.I.; Blais, A.; Frunzio, L.; Huang, R.S.; Majer, J.; Kumar, S.; Girvin, S.M.; Schoelkopf, R.J. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature
**2004**, 431, 162–167. [Google Scholar] [CrossRef] [PubMed]

**Figure 1.**(

**a**) Sketch of the geonium chip. The electrons are captured at some height ${y}_{0}$ above the central electrode, the so-called ring [11]. DC-voltages applied to the electrodes generate the electrostatic potential well around which the particles are captured and oscillate; (

**b**) Motion of a trapped electron.

**Figure 2.**(

**a**) Basic cryogenic setup with the 4 K pulse-tube cryocooler hosting one geonium chip and an RF superconducting coil for the detection of the electron’s axial motion; (

**b**) Detection of the axial motion. The particle induces some charge upon the chip’s surface which generates the detection signal. The latter is amplified and measured with a FFT spectrum analyser.

**Figure 3.**(

**a**) Possible introduction of the microwave signal to be measured into the geonium chip with the trapped electron. The picture shows a sketch of the cryogenic vacuum chamber which encloses the electron and builds also a 3D microwave cavity. This cavity is used to inhibit cyclotron spontaneous emission into free space (see text); (

**b**) The continuous Stern-Gerlach effect. The upper diagram shows the variation of the axial frequency caused by the absorption of one MW photon and the subsequent spontaneous emission after a cyclotron radiative lifetime of ${\tau}_{s}$. The lower graph shows the variation of the axial trapping potential experienced by the electron as a function of the cyclotron quantum number (a negative magnetic curvature ${B}_{2}<0$ is assumed).

**Figure 4.**(

**a**) Input port for the MW signal and input admittance ${Y}_{in}$ of the combined system, electron + CPW transmission-line terminated by a load admittance ${Y}_{L}$; (

**b**) Dimensions of the CPW- line which guides the microwave signal towards the trapped electron.

**Figure 5.**Characteristic admittance of the quantum cyclotron oscillator. Computed with Equations (7) and (8), truncating the series at $n=\mathrm{60,000}$. Both upper graphs assume $S=0.7$ mm, while the lower ones $S=0.1$ mm. All assume a 40 mm chip width on a quartz substrate of $0.675$ mm thickness, 200 nm gold layer and with $0.02$ S characteristic admittance of the CPW.

**Figure 6.**Radiative lifetime of the quantum cyclotron oscillator coupled to a CPW. Calculated with the same CPW dimensions assumed in Figure 5, with $S=0.7$ mm in both graphs.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Cridland, A.; Lacy, J.H.; Pinder, J.; Verdú, J.
Single Microwave Photon Detection with a Trapped Electron. *Photonics* **2016**, *3*, 59.
https://doi.org/10.3390/photonics3040059

**AMA Style**

Cridland A, Lacy JH, Pinder J, Verdú J.
Single Microwave Photon Detection with a Trapped Electron. *Photonics*. 2016; 3(4):59.
https://doi.org/10.3390/photonics3040059

**Chicago/Turabian Style**

Cridland, April, John Henry Lacy, Jonathan Pinder, and José Verdú.
2016. "Single Microwave Photon Detection with a Trapped Electron" *Photonics* 3, no. 4: 59.
https://doi.org/10.3390/photonics3040059