A Thermally Tunable 1 × 4 Channel Wavelength Demultiplexer Designed on a Low-Loss Si3N4 Waveguide Platform
Abstract
:1. Introduction
2. Design of the 1 × 4 Channel Wavelength Demultiplexer
2.1. Low-Loss Si3N4 Waveguide
2.2. Design of the 2 × 2 MMI Coupler
LMMI (µM) | Percentage of the Input Power Coupled to the Two O/P Waveguides | Input Power Coupled to the Two O/P Waveguides (dB) | ||
---|---|---|---|---|
O/P 1 | O/P 2 | O/P 1 | O/P 2 | |
1850 | 42% | 40% | −3.76 | −3.97 |
1860 | 47.1% | 46.5% | −3.27 | −3.32 |
1870 | 43% | 42.5% | −3.66 | −3.71 |
2.3. MZI Based 1 × 4 Channel Wavelength Demultiplexer
3. Experiment Setup and Results
3.1. Power Splitting Ratio in the Si3N4 Waveguide Based MMI Couplers
3.2. Transmission Response of the Four Channel Wavelength Demultiplexer
3.3. 160 Gb/s Wavelength Division Multiplexing Operation
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Liboiron-Ladouceur, O.; Raponi, P.G.; Andriolli, N.; Cerutti, I.; Hai, M.S.; Castoldi, P. A Scalable Space-Time Multi-plane Optical Interconnection Network Using Energy-Efficient Enabling Technologies. J. Opt. Commun. Netw. 2011, 3, A1–A11. [Google Scholar] [CrossRef]
- Lin, T.; Williams, K.A.; Penty, R.V.; White, I.H.; Glick, M. Capacity Scaling in a Multihost Wavelength-Striped SOA-Based Switch Fabric. J. Lightwave Technol. 2007, 25, 655–663. [Google Scholar] [CrossRef]
- Jinno, M.; Takara, H.; Sone, Y.; Yonenaga, K.; Hirano, A. Multiflow optical transponder for efficient multilayer optical networking. IEEE Commun. Mag. 2012, 50, 56–65. [Google Scholar] [CrossRef]
- Bauters, J.F.; Heck, M.J.R.; John, D.; Dai, D.; Tien, M.; Barton, J.S.; Leinse, A.; Heideman, R.G.; Blumenthal, D.J.; Bowers, J.E. Ultra-low-loss high-aspect-ratio Si3N4 waveguides. Opt. Express 2011, 19, 3163–3174. [Google Scholar] [CrossRef] [PubMed]
- Burmeister, E.F.; Mack, J.P.; Poulsen, H.N.; Mašanovic, M.L.; Stamenic, B.; Blumenthal, D.J.; Bowers, J.E. Photonic integrated circuit optical buffer for packet-switched networks. Opt. Express 2009, 17, 6629–6635. [Google Scholar] [CrossRef] [PubMed]
- Spencer, D.T.; Bauters, J.F.; Heck, M.J.R.; Bowers, J.E. Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime. Optica 2014, 1, 153–157. [Google Scholar] [CrossRef]
- Bauters, J.; Heck, M.; John, D.; Tien, M.-C.; Leinse, A.; Heideman, R.; Blumenthal, D.; Bowers, J. Ultra-low loss silica-based waveguides with millimeter bend radius. In Proceedings of the 36th European Conference on Optical Communication (ECOC), Torino, Italy, 19–23 September 2010.
- Chrostowski, L.; Hochberg, M. Silicon Photonics Design: From Devices to Systems; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Bauters, J.F.; Heck, M.J.R.; John, D.D.; Barton, J.S.; Bruinink, C.M.; Leinse, A.; Heideman, R.G.; Blumenthal, D.J.; Bowers, J.E. Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding. Opt. Express 2011, 19, 24090–24101. [Google Scholar] [CrossRef] [PubMed]
- LeGrange, J.D.; Simsarian, J.E.; Bernasconi, P.; Buhl, L.; Gripp, J.; Neilson, D.T. Demonstration of an integrated buffer for an all-optical packet router. IEEE Photon. Technol. Lett. 2009, 21, 781–783. [Google Scholar] [CrossRef]
- Dai, D.; Wang, Z.; Bauters, J.F.; Tien, M.-C.; Heck, M.J.R.; Blumenthal, D.J.; Bowers, J.E. Low-loss Si3N4 arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides. Opt. Express 2011, 19, 14130–14136. [Google Scholar] [CrossRef] [PubMed]
- Samadi, P.; Kostko, I.A.; Jain, A.; Shia, B.; Callender, C.L.; Dumais, P.; Jacob, S.; Chen, L.R. Tunable lattice-form Mach-Zehnder interferometer for arbitrary binary code generation at 40 GHz. IEEE J. Lightwave Technol. 2010, 28, 3070–3078. [Google Scholar] [CrossRef]
- Wörhoff, K.; Heideman, R.G.; Leinse, A.; Hoekman, M. TriPleX: A versatile dielectric photonic platform. Adv. Opt. Technol. 2015, 4, 189–207. [Google Scholar] [CrossRef]
- Thomson, D.J.; Hu, Y.; Reed, G.T.; Fedeli, J.-M. Low loss MMI couplers for high performance MZI modulators. IEEE Photon. Technol. Lett. 2010, 22, 1485–1487. [Google Scholar] [CrossRef]
- Madsen, C.K.; Zhao, J.H. Optical Filter Design and Analysis; Wiley: New York, NY, USA, 1999; pp. 171–177. [Google Scholar]
- Verbeek, B.H.; Henry, C.H.; Olsson, N.A.; Orlowsky, K.J.; Kazarinov, R.F.; Johnson, B.H. Integrated four-channel Mach-Zehnder multi/demultiplexer fabricated with phosphorous doped SiO2 waveguides on Si. J. Lightwave Technol. 1988, 6, 1011–1015. [Google Scholar] [CrossRef]
- Dulkeith, E.; Xia, F.; Schares, L.; Green, W.M.J.; Vlasov, Y.A. Group index and group velocity dispersion in silicon-on-insulator photonic wires. Opt. Express 2006, 14, 3853–3863. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hai, M.S.; Leinse, A.; Veenstra, T.; Liboiron-Ladouceur, O. A Thermally Tunable 1 × 4 Channel Wavelength Demultiplexer Designed on a Low-Loss Si3N4 Waveguide Platform. Photonics 2015, 2, 1065-1080. https://doi.org/10.3390/photonics2041065
Hai MS, Leinse A, Veenstra T, Liboiron-Ladouceur O. A Thermally Tunable 1 × 4 Channel Wavelength Demultiplexer Designed on a Low-Loss Si3N4 Waveguide Platform. Photonics. 2015; 2(4):1065-1080. https://doi.org/10.3390/photonics2041065
Chicago/Turabian StyleHai, Mohammed Shafiqul, Arne Leinse, Theo Veenstra, and Odile Liboiron-Ladouceur. 2015. "A Thermally Tunable 1 × 4 Channel Wavelength Demultiplexer Designed on a Low-Loss Si3N4 Waveguide Platform" Photonics 2, no. 4: 1065-1080. https://doi.org/10.3390/photonics2041065
APA StyleHai, M. S., Leinse, A., Veenstra, T., & Liboiron-Ladouceur, O. (2015). A Thermally Tunable 1 × 4 Channel Wavelength Demultiplexer Designed on a Low-Loss Si3N4 Waveguide Platform. Photonics, 2(4), 1065-1080. https://doi.org/10.3390/photonics2041065