Multi-Format Wavelength Conversion Using Quantum Dash Mode-Locked Laser Pumps
Abstract
:1. Introduction
2. Tunable Wavelength Converter Scheme
3. Experimental Demonstration
3.1. Experimental Setup
3.2. Experimental Results
OOK | 4.4 | 3.3 | 3.1 | 3.5 | 3.8 | 4.2 | 3.8 | 3.5 | 3.3 | 3.6 | 3.2 | 4.0 | 3.4 | 3.1 | 4.0 | ||
DPSK | 4.9 | 5.3 | 5.8 | 5.8 | 6.0 | 5.5 | 5.1 | 5.9 | 6.1 | 5.2 | 5.0 | 5.1 | 5.0 | 5.8 | 5.8 | ||
⋮ | |||||||||||||||||
OOK | 5.0 | 4.5 | 4.3 | 4.0 | 3.5 | 3.2 | 2.8 | 3.3 | 3.7 | 3.4 | 3.6 | 3.7 | 3.5 | 3.4 | 3.4 | ||
DPSK | 5.3 | 5.2 | 5.4 | 6.0 | 5.4 | 6.1 | 5.9 | 6.0 | 6.0 | 5.8 | 5.8 | 5.2 | 5.1 | 5.1 | 5.5 | ||
⋮ | |||||||||||||||||
OOK | 5.3 | 5.1 | 4.7 | 4.2 | 4.0 | 4.1 | 3.8 | 4.0 | 3.5 | 3.6 | 3.7 | 3.5 | 3.1 | 2.9 | 2.6 | ||
DPSK | 6.7 | 6.6 | 6.4 | 6.5 | 6.2 | 6.0 | 5.9 | 5.5 | 5.7 | 5.4 | 5.2 | 5.3 | 5.1 | 5.0 | 5.0 |
4. Conclusion
Acknowledgements
Author Contributions
Conflicts of Interest
References
- Winzer, P.J.; Essiambre, R.-J. Advanced modulation formats for high-capacity optical transport networks. IEEE/OSA J. Lightw. Technol. 2006, 24, 4711–4728. [Google Scholar] [CrossRef]
- Murthy, C.S.R.; Gurusamy, M. WDM Optical Networks: Concepts, Design, and Algorithms; Prentice Hall PTR Englewood Cliffs: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Xue, F.; Pan, Z.; Bansal, Y.; Cao, J.; Jeon, M.; Okamoto, K.; Kamei, S.; Akella, V.; Yoo, S. End-to-end contention resolution schemes for an optical packet switching network with enhanced edge routers. IEEE/OSA J. Lightw. Technol. 2003, 21, 2595–2604. [Google Scholar]
- De Laat, M.; Duijn, R.; Pluk, E.; van den Hoven, G.; Urban, P.; de Waardt, H. Flexpon: A hybrid TDM/WDM network enabling dynamic bandwidth reconfiguration using wavelength routing. In Proceedings of the 35th European Conference on Optical Communication, Vienna, Austria, 20–24 September 2009.
- Gripp, J.; Simsarian, J.; LeGrange, J.; Bernasconi, P.; Neilson, D. Architectures, components, and subsystems for future optical packet switches. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 1394–1404. [Google Scholar] [CrossRef]
- Diez, S.; Schmidt, C.; Ludwig, R.; Weber, H.; Obermann, K.; Kindt, S.; Koltchanov, I.; Petermann, K. Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching. IEEE J. Sel. Top. Quantum Electron. 1997, 3, 1131–1145. [Google Scholar] [CrossRef]
- Yoo, S.B. Wavelength conversion technologies for WDM network applications. IEEE/OSA J. Lightw. Technol. 1996, 14, 955–966. [Google Scholar] [CrossRef]
- Li, Z.; Dong, Y.; Mo, J.; Wang, Y.; Lu, C. Cascaded all-optical wavelength conversion for RZ-DPSK signal based on four-wave mixing in semiconductor optical amplifier. Photon. Technol. Lett. 2004, 16, 1685–1687. [Google Scholar] [CrossRef]
- Lacey, J.P.; Summerfield, M.A.; Madden, S. Tunability of polarization-insensitive wavelength converters based on four-wave mixing in semiconductor optical amplifiers. IEEE/OSA J. Lightw. Technol. 1998, 16, 2419–2427. [Google Scholar] [CrossRef]
- Contestabile, G.; Banchi, L.; Ciaramella, E.; Presi, M. Investigation of transparency of FWM in SOA to advanced modulation formats involving intensity, phase, and polarization multiplexing. IEEE/OSA J. Lightw. Technol. 2009, 27, 4256–4261. [Google Scholar] [CrossRef]
- Contestabile, G.; Yoshida, Y.; Maruta, A.; Kitayama, K. Ultra-broad band, low power, highly efficient coherent wavelength conversion in quantum dot SOA. Opt. Express 2012, 20, 27902–27907. [Google Scholar] [CrossRef] [PubMed]
- M’Sallem, Y.B.; Shen, A.; Lelarge, F.; Pommereau, F.; Make, D.; LaRochelle, S.; Rusch, L.A. Quantum-dash mode-locked lasers for tunable wavelength conversion on a 100 GHz frequency grid. J. Opt. Commun. Netw. 2012, 4, A69–A76. [Google Scholar] [CrossRef]
- Lee, S.-L.; Chien, C.-Y.; Tsao, H.-W.; Wu, J. Practical considerations of using tunable lasers for packet routing in multiwavelength optical networks. In Proceedings of the International Conference on Parallel Processing Workshops, Kaohsiung, Taiwan, 6–9 October 2003; pp. 325–331.
- Coldren, L.; Fish, G.; Akulova, Y.; Barton, J.; Johansson, L.; Coldren, C. Tunable semiconductor lasers: A tutorial. IEEE/OSA J. Lightw. Technol. 2004, 22, 193–202. [Google Scholar] [CrossRef]
- Shi, K.; Anandarajah, P.; Reid, D.; Smyth, F.; Barry, L.; Yu, Y. SG-DBR tunable laser linewidth and its impact on advanced modulation format transmission. In Proceedings of the IEEE European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference, Munich, Germany, 14–19 June 2009.
- Duan, G.-H.; Shen, A.; Akrout, A.; Dijk, F.V.; Lelarge, F.; Pommereau, F.; LeGouezigou, O.; Provost, J.-G.; Gariah, H.; Blache, F.; et al. High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications. Bell Labs Tech. J. 2009, 14, 63–84. [Google Scholar] [CrossRef]
- Gnauck, A.H.; Winzer, P.J. Optical phase-shift-keyed transmission. IEEE/OSA J. Lightw. Technol. 2005, 23, 115–130. [Google Scholar] [CrossRef]
- Xu, C.; Liu, X.; Wei, X. Differential phase-shift keying for high spectral efficiency optical transmissions. IEEE J. Sel. Top. Quantum Electron. 2004, 10, 281–293. [Google Scholar] [CrossRef]
- Gupta, S.; Calabretta, N.; Contestabile, G.; Ciaramella, E.; Gangopadhyay, R. Experimental characterization of SOA-based wavelength converters for DPSK signals. In Proceedings of the First International Conference on Communications and Networking in China, Beijing, China, 25–27 October 2006; pp. 1–5.
- Okoshi, T.; Kikuchi, K.; Nakayama, A. Novel method for high resolution measurement of laser output spectrum. Electron. Lett. 1980, 16, 630–631. [Google Scholar] [CrossRef]
- Tomkos, I.; Zacharopoulos, I.; Roditi, E.; Syvridis, D.; Girardin, F.; Occhi, L.; Uskov, A. Highly performing wavelength converter based on dual pump wave mixing in semiconductor optical amplifier. Proc. IEEE Lasers Electro-Optics Soc. Annu. Meet. 1998, 1, 71–72. [Google Scholar]
- Hong, Y.; Bandyopadhyay, S.; Spencer, P.; Shore, K. Polarization-independent optical spectral inversion without frequency shift using a single semiconductor optical amplifier. IEEE J. Quantum Electron. 2003, 39, 1123–1128. [Google Scholar] [CrossRef]
- Otsubo, K.; Tanaka, S.; Tomabechi, S.; Morito, K.; Kuwatsuka, H. High efficiency, wide range and completely transparent wavelength conversion method using replicas generated by dual pump nearly-degenerated four-wave mixing in a mach-zehnder interferometer SOA. In Proceendings of the Optical Fiber Communication Conference, and National Fiber Optic Engineers Conference, Anaheim, CA, USA, 5–10 March 2006.
- D’ottavi, A.; Girardin, F.; Graziani, L.; Martelli, F.; Spano, P.; Mecozzi, A.; Scotti, S.; Dall’Ara, R.; Eckner, J.; Guekos, G. Four-wave mixing in semiconductor optical amplifiers: A practical tool for wavelength conversion. IEEE J. Sel. Top. Quantum Electron. 1997, 3, 522–528. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
M’Sallem, Y.B.; Park, C.S.; LaRochelle, S.; Rusch, L.A. Multi-Format Wavelength Conversion Using Quantum Dash Mode-Locked Laser Pumps. Photonics 2015, 2, 527-539. https://doi.org/10.3390/photonics2020527
M’Sallem YB, Park CS, LaRochelle S, Rusch LA. Multi-Format Wavelength Conversion Using Quantum Dash Mode-Locked Laser Pumps. Photonics. 2015; 2(2):527-539. https://doi.org/10.3390/photonics2020527
Chicago/Turabian StyleM’Sallem, Yousra Ben, Chul Soo Park, Sophie LaRochelle, and Leslie A. Rusch. 2015. "Multi-Format Wavelength Conversion Using Quantum Dash Mode-Locked Laser Pumps" Photonics 2, no. 2: 527-539. https://doi.org/10.3390/photonics2020527
APA StyleM’Sallem, Y. B., Park, C. S., LaRochelle, S., & Rusch, L. A. (2015). Multi-Format Wavelength Conversion Using Quantum Dash Mode-Locked Laser Pumps. Photonics, 2(2), 527-539. https://doi.org/10.3390/photonics2020527