Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = four wave mixing (FWM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 544 KiB  
Communication
Optical Unidirectional Transport and Directional Blockade in Cold Atoms via Non-Hermitian Four-Wave Mixing
by Xiao Liu, Maurizio Artoni, Giuseppe La Rocca and Jinhui Wu
Photonics 2025, 12(5), 521; https://doi.org/10.3390/photonics12050521 - 21 May 2025
Viewed by 330
Abstract
We propose a scheme for realizing nonreciprocal optical scattering with non-Hermitian four-wave mixing (FWM) in a double-Λ system of cold atoms driven by coupling and dressing phase-mismatched standing-wave (SW) fields. Four scattering channels—direct transmission, cross transmission, direct reflection, and cross reflection—can be [...] Read more.
We propose a scheme for realizing nonreciprocal optical scattering with non-Hermitian four-wave mixing (FWM) in a double-Λ system of cold atoms driven by coupling and dressing phase-mismatched standing-wave (SW) fields. Four scattering channels—direct transmission, cross transmission, direct reflection, and cross reflection—can be established for a probe and a signal field, some of which are nonreciprocal due to non-Hermitian spatial modulations when the two SW driving fields exhibit a π/4 phase shift. We find in particular that it is viable to attain single-color unidirectional transport, dual-color unidirectional transport, and single-color directional blockade with respect to a probe and a signal field incident upon this atomic sample from the same side, due to perfect destructive interference between direct and cross scattering channels. This work provides a new paradigm for studying non-Hermitian nonlinear optics and offers a theoretical foundation for designing all-optical atomic devices based on multi-channel nonreciprocal scattering. Full article
Show Figures

Figure 1

10 pages, 673 KiB  
Article
Optical Nonreciprocity Based on the Four-Wave Mixing Effect in Semiconductor Quantum Dots
by Zelin Lin, Han Yang, Fei Xu, Yihong Qi, Yueping Niu and Shangqing Gong
Nanomaterials 2025, 15(5), 380; https://doi.org/10.3390/nano15050380 - 1 Mar 2025
Viewed by 720
Abstract
Optical nonreciprocity and nonreciprocal devices such as optical diodes have broad and promising applications in various fields, ranging from optical communication to signal process. Here, we propose a magnet-free nonreciprocal scheme based on the four-wave mixing (FWM) effect in semiconductor quantum dots (SQDs). [...] Read more.
Optical nonreciprocity and nonreciprocal devices such as optical diodes have broad and promising applications in various fields, ranging from optical communication to signal process. Here, we propose a magnet-free nonreciprocal scheme based on the four-wave mixing (FWM) effect in semiconductor quantum dots (SQDs). Via controlling the directions of the coupling fields, the probe field can achieve high transmission in the forward direction within a certain frequency range due to the FWM effect. And the transmission of the probe field in the backward direction undergoes significant reduction, as the FWM effect is absent. The calculation results show a wide nonreciprocal transmission window with isolation greater than 12 dB and insertion loss lower than 0.08 dB. The influences of the Rabi frequencies of the coupling fields, the medium length, and the decay rates on the nonreciprocal propagation of the probe field are also studied, showing the requirements of these parameters for good nonreciprocal performances. Our work may offer an insight for developing optical nonreciprocal devices based on the FWM process and the SQD system. Full article
(This article belongs to the Special Issue Nanophotonics and Plasmonics)
Show Figures

Figure 1

11 pages, 4795 KiB  
Article
Numerical Investigation of Raman-Assisted Four-Wave Mixing in Tapered Fiber Raman Fiber Amplifier
by Shanmin Huang, Yang Zhang, Xiulu Hao, Chenchen Fan, Xiao Chen, Jun Ye, Tianfu Yao, Hanwei Zhang, Liangjin Huang, Jinyong Leng, Jiangming Xu, Zhiyong Pan and Pu Zhou
Photonics 2024, 11(11), 1059; https://doi.org/10.3390/photonics11111059 - 12 Nov 2024
Cited by 1 | Viewed by 1266
Abstract
The generation of unwanted higher-order Raman effects is the main factor restricting the power scaling of Raman fiber amplifiers (RFAs). This phenomenon arises from an interplay of physical processes, including stimulated Raman scattering (SRS), four-wave mixing (FWM), and the intricate temporal and spectral [...] Read more.
The generation of unwanted higher-order Raman effects is the main factor restricting the power scaling of Raman fiber amplifiers (RFAs). This phenomenon arises from an interplay of physical processes, including stimulated Raman scattering (SRS), four-wave mixing (FWM), and the intricate temporal and spectral dynamics. Tapered fibers have demonstrated excellent nonlinear effects suppression characteristics due to the varying core diameter along the fiber, which is widely used in ytterbium-doped fiber lasers. In this paper, a comprehensive numerical investigation is conducted on the core-pumping tapered fiber RFAs considering Raman-assisted FWM. The higher-order Raman power in the tapered fiber is always kept at a low level, showing a weak Raman-assisted FWM effect. A numerical investigation is conducted to study the impact of the tapering ratio, the lengths of the thin part, tapered region, and thick part on the higher-order Raman threshold of RFAs. Furthermore, the impact of phase mismatch variations caused by changes in the seed wavelength, on the output signal power and nonlinear effects is analyzed. This paper presents, for the first time, a study on core-pumped RFAs using tapered fibers, providing a novel perspective on enhancing the power of RFAs. Full article
(This article belongs to the Special Issue Recent Advances and Future Perspectives in Solid-State Lasers)
Show Figures

Figure 1

33 pages, 14062 KiB  
Article
Parametric Characterization of Nonlinear Optical Susceptibilities in Four-Wave Mixing: Solvent and Molecular Structure Effects
by José L. Paz, Alberto Garrido-Schaeffer, Marcos A. Loroño, Lenin González-Paz, Edgar Márquez, José R. Mora and Ysaias J. Alvarado
Symmetry 2024, 16(10), 1263; https://doi.org/10.3390/sym16101263 - 25 Sep 2024
Viewed by 1279
Abstract
We study the nonlinear absorptive and dispersive optical properties of molecular systems immersed in a thermal reservoir interacting with a four-wave mixing (FWM) signal. Residual spin-orbit Hamiltonians are considered in order to take into account the internal structure of the molecule. As system [...] Read more.
We study the nonlinear absorptive and dispersive optical properties of molecular systems immersed in a thermal reservoir interacting with a four-wave mixing (FWM) signal. Residual spin-orbit Hamiltonians are considered in order to take into account the internal structure of the molecule. As system parameters in the dissipation processes, transverse and longitudinal relaxation times are considered for stochastic solute–solvent interaction processes. The intramolecular coupling effects on the optical responses are studied using a molecule model consisting of two coupled harmonic curves of electronic energies with displaced minima in nuclear energies and positions. In this study, the complete frequency space is considered through the pump–probe detuning, without restricting the derivations to only maximums of population oscillations. This approach opens the possibility of studying the behavior of optical responses, which is very useful in experimental design. Our results indicate the sensitivity of the optical responses to parameters of the molecular structure as well as to those derived from the photonic process of FWM signal generation. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

17 pages, 1001 KiB  
Article
Enhanced Coexistence of Quantum Key Distribution and Classical Communication over Hollow-Core and Multi-Core Fibers
by Weiwen Kong, Yongmei Sun, Tianqi Dou, Yuheng Xie, Zhenhua Li, Yaoxian Gao, Qi Zhao, Na Chen, Wenpeng Gao, Yuanchen Hao, Peizhe Han, Yang Liu and Jianjun Tang
Entropy 2024, 26(7), 601; https://doi.org/10.3390/e26070601 - 15 Jul 2024
Cited by 4 | Viewed by 2510
Abstract
In this paper, we investigate the impact of classical optical communications in quantum key distribution (QKD) over hollow-core fiber (HCF), multi-core fiber (MCF) and single-core fiber (SCF) and propose wavelength allocation schemes to enhance QKD performance. Firstly, we theoretically analyze noise interference in [...] Read more.
In this paper, we investigate the impact of classical optical communications in quantum key distribution (QKD) over hollow-core fiber (HCF), multi-core fiber (MCF) and single-core fiber (SCF) and propose wavelength allocation schemes to enhance QKD performance. Firstly, we theoretically analyze noise interference in QKD over HCF, MCF and SCF, such as spontaneous Raman scattering (SpRS) and four-wave mixing (FWM). To mitigate these noise types and optimize QKD performance, we propose a joint noise suppression wavelength allocation (JSWA) scheme. FWM noise suppression wavelength allocation and Raman noise suppression wavelength allocation are also proposed for comparison. The JSWA scheme indicates a significant enhancement in extending the simultaneous transmission distance of classical signals and QKD, reaching approximately 100 km in HCF and 165 km in MCF under a classical power per channel of 10 dBm. Therefore, MCF offers a longer secure transmission distance compared with HCF when classical signals and QKD coexist in the C-band. However, when classical signals are in the C-band and QKD operates in the O-band, the performance of QKD in HCF surpasses that in MCF. This research establishes technical foundations for the design and deployment of QKD optical networks. Full article
(This article belongs to the Special Issue Classical and Quantum Networks: Theory, Modeling and Optimization)
Show Figures

Figure 1

12 pages, 9871 KiB  
Article
TiN/Ti3C2 Heterojunction Microfiber-Enhanced Four-Wave Mixing-Based All-Optical Wavelength Converter
by Ke Wang, Qi-Dong Liu, Yu-Feng Song, Bin Zhang, Qing-Dong Zeng, Yuan-Yuan Zhang and Zhen-Hong Wang
Photonics 2023, 10(10), 1066; https://doi.org/10.3390/photonics10101066 - 22 Sep 2023
Cited by 4 | Viewed by 1495
Abstract
As a novel nanomaterial, the TiN/Ti3C2 heterojunction has been demonstrated to possess exceptional optoelectronic properties, offering significant potential for applications in fields such as communication, optical sensors, and image processing. The rapid evolution of the internet demands higher communication capacity [...] Read more.
As a novel nanomaterial, the TiN/Ti3C2 heterojunction has been demonstrated to possess exceptional optoelectronic properties, offering significant potential for applications in fields such as communication, optical sensors, and image processing. The rapid evolution of the internet demands higher communication capacity and information processing speed. In this context, all-optical wavelength conversion, a pivotal technique in all-optical signal processing, holds paramount importance in overcoming electronic bottlenecks, enhancing wavelength utilization, resolving wavelength competition, and mitigating network congestion. Utilizing the idle light generated through the four-wave mixing (FWM) process accurately mimics the bit patterns of signal channels. This process is inherently rapid and theoretically capable of surpassing electronic bottlenecks with ease. By placing an optical filter at the fiber output end to allow idle light passage while blocking pump and signal light, the output becomes a wavelength-converted replica of the original bitstream. It has been verified that TiN/Ti3C2 heterojunction-coated microfiber (THM) exhibits outstanding third-order nonlinear coefficients. Building upon this, we achieved a THM-enhanced FWM all-optical wavelength converter, resulting in a ~4.48 dB improvement in conversion efficiency. Compared to conventional high-nonlinear fibers, this compact device significantly reduces fiber length and can be easily integrated into current high-speed optical communication networks. It demonstrates broad prospects in the realms of all-optical signal processing, robotic applications, ultra-high-speed communication, and beyond. Full article
(This article belongs to the Special Issue Novel Two-Dimensional Materials Based on Nonlinear Photonics)
Show Figures

Figure 1

11 pages, 3491 KiB  
Communication
Performance Analysis of the Four-Wave Mixing Effect with Various Tapered Fiber Waist Diameters
by Harith Ahmad, Muhammad Firdaus Salleh, Muhammad Khairol Annuar Zaini, Muhamad Zharif Samion, Muhammad Faizal Ismail and Siti Aisyah Reduan
Photonics 2023, 10(7), 745; https://doi.org/10.3390/photonics10070745 - 28 Jun 2023
Cited by 2 | Viewed by 1584
Abstract
In this work, we report the use of different waist diameters of tapered fiber to generate a four-wave mixing (FWM) effect. The FWM conversion efficiencies obtained from the tapered fiber with 10 µm, 20 µm, and 30 µm waist diameters were −37.81 dB, [...] Read more.
In this work, we report the use of different waist diameters of tapered fiber to generate a four-wave mixing (FWM) effect. The FWM conversion efficiencies obtained from the tapered fiber with 10 µm, 20 µm, and 30 µm waist diameters were −37.81 dB, −38.50 dB, and −39.01 dB, respectively, at 1.584 W pump power. The FWM-based outputs were stable over a 60 min measurement at a 1.5 µm wavelength operation, with a small fluctuation range of 0.21 to 0.45 dB. Furthermore, the setup could generate the FWM effect with a maximum tuning range of 9.5 nm (10 µm and 20 µm) and 9.0 nm (30 µm). The numerical simulation results showed a high nonlinearity at the air-cladding region when the tapered waist diameter was reduced. These characteristics of the tapered fiber can be used as an excellent medium for studying nonlinear phenomena, which could result in the development of new photonic devices for high-power optical communication. Full article
Show Figures

Figure 1

14 pages, 2997 KiB  
Article
Improving the Resistance of AO-OFDM Signal to Fiber Four-Wave Mixing Effect Based on Insertion Guard Interval
by Kai Lv, Hao Liu, Anxu Zhang, Lipeng Feng, Xia Sheng, Yuyang Liu, Junjie Li and Xiaoli Huo
Photonics 2023, 10(3), 311; https://doi.org/10.3390/photonics10030311 - 14 Mar 2023
Cited by 1 | Viewed by 1947
Abstract
In this paper, a method to suppress the impact of the nonlinear effects on an all optical orthogonal frequency division multiplexing (AO-OFDM) system is proposed. By inserting a guard interval (GI), the duty cycle of the optical signal in each symbol period of [...] Read more.
In this paper, a method to suppress the impact of the nonlinear effects on an all optical orthogonal frequency division multiplexing (AO-OFDM) system is proposed. By inserting a guard interval (GI), the duty cycle of the optical signal in each symbol period of each subcarrier is decreased, thus generating a ‘zeroed’ temporal. By giving different time delays to the sub-carriers, these ‘zeroed’ temporals and optical signals of the adjacent sub-carriers are interleaved, which reduces the coincidence of the optical signals between the sub-carriers and eliminates the products of the four-wave mixing (FWM) effect to suppress the influence of the nonlinear effect on the system. The simulation results show that for an AO-OFDM system with 32 subcarriers, inserting GI and introducing different delays for each subcarrier can improve the transmission distance by 30 km or enhance the spectral efficiency by 16.7%, considering the 7% hard decision forward error correction (HD-FEC) threshold. Moreover, even when the number of subcarriers is up to 256 and the power of each subcarrier is as high as 0 dBm, our proposed signal optimization scheme can still guarantee that the BER can satisfy the 7% HD-FEC threshold. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

12 pages, 4009 KiB  
Article
Dispersion-Oriented Inverse Design of Photonic-Crystal Fiber for Four-Wave Mixing Application
by Linqiao Gan, Fei Yu, Yazhou Wang, Ning Wang, Xinyue Zhu, Lili Hu and Chunlei Yu
Photonics 2023, 10(3), 294; https://doi.org/10.3390/photonics10030294 - 10 Mar 2023
Cited by 2 | Viewed by 2624
Abstract
In this paper, we demonstrate the application of a deep learning neural network (DNN) in the dispersion-oriented inverse design of photonic-crystal fiber (PCF) for the fine-tuning of four-wave mixing (FWM). The empirical formula of PCF dispersion is applied instead of numerical simulation to [...] Read more.
In this paper, we demonstrate the application of a deep learning neural network (DNN) in the dispersion-oriented inverse design of photonic-crystal fiber (PCF) for the fine-tuning of four-wave mixing (FWM). The empirical formula of PCF dispersion is applied instead of numerical simulation to generate a large dataset of phase-matching curves of various PCF designs, which significantly improves the accuracy of the DNN prediction. The accuracies of DNNs’ predicted PCF structure parameters are all above 95%. The simulations of the DNN-predicted PCFs structure demonstrate that the FWM wavelength has an average numerical mean square error (MAE) of 1.92 nm from the design target. With the help of DNN, we designed and fabricated a specific PCF for wavelength conversion via FWM from 1064 nm to 770 nm for biomedical imaging applications. Pumped by a microchip laser at 1064 nm, the signal wavelength is measured at 770.2 nm. Full article
Show Figures

Figure 1

26 pages, 7157 KiB  
Review
Recent Progress in Short and Mid-Infrared Single-Photon Generation: A Review
by Arianna Elefante, Stefano Dello Russo, Fabrizio Sgobba, Luigi Santamaria Amato, Deborah Katia Pallotti, Daniele Dequal and Mario Siciliani de Cumis
Optics 2023, 4(1), 13-38; https://doi.org/10.3390/opt4010003 - 12 Jan 2023
Cited by 6 | Viewed by 5659
Abstract
The generation of single photons in the mid-infrared spectral region is attracting the interest of scientific and technological research, motivated by the potential improvements that many important and emerging applications, such as quantum sensing, metrology and communication, could benefit from. This review reports [...] Read more.
The generation of single photons in the mid-infrared spectral region is attracting the interest of scientific and technological research, motivated by the potential improvements that many important and emerging applications, such as quantum sensing, metrology and communication, could benefit from. This review reports the progress in short and mid-infrared single photon generation, focusing on probabilistic sources based on the two non-linear processes of spontaneous parametric downconversion (SPDC) and four wave mixing (FWM). On one hand, numerical simulations of mid-infrared SPDC are described as a powerful tool to assist and guide the experimental realization, along with the implementation and engineering of novel non-linear materials. On the other hand, the advantages offered by FWM in silicon waveguides in terms of integration, miniaturization and manufacturability are presented, providing an optimal technology for integrated quantum applications. Full article
Show Figures

Figure 1

14 pages, 3198 KiB  
Article
Transfer of Orbital Angular Momentum of Light Using Autler-Townes Splitting
by Seyyed Hossein Asadpour, Hamid Reza Hamedi and Emmanuel Paspalakis
Photonics 2022, 9(12), 954; https://doi.org/10.3390/photonics9120954 - 9 Dec 2022
Cited by 11 | Viewed by 2048
Abstract
We propose a scheme to exchange optical vortices beyond electromagnetically induced transparency (EIT) but based on four-wave mixing (FWM) in a five-level atomic system consisting of two Λ subsystems linked via a weak driving field. When the laser fields are strong enough, the [...] Read more.
We propose a scheme to exchange optical vortices beyond electromagnetically induced transparency (EIT) but based on four-wave mixing (FWM) in a five-level atomic system consisting of two Λ subsystems linked via a weak driving field. When the laser fields are strong enough, the quantum interference responsible for the EIT in each Λ subsystem is washed out, giving rise to the Autler-Townes splitting (ATS). When only one of the control fields carries an optical vortex, it is shown that the generated FWM field obtains the vorticity of the vortex control. We distinguish between three different regimes, i.e., a pure EIT, a joint EIT-ATS, and a dual-ATS, where the optical angular momentum (OAM) translation can take place. Elaborating on the distinction between three regimes through numerical analysis, we find that the maximum energy conversion efficiency is obtained in the joint EIT-ATS and dual-ATS regimes. The latter is more favorable as the absorption losses vanish as the beam propagates into the atomic cloud. The results may find applications in the implementation of high-efficient frequency and OAM conversion devices for quantum information processing. Full article
(This article belongs to the Special Issue Light Control and Particle Manipulation)
Show Figures

Figure 1

9 pages, 4053 KiB  
Communication
Optical-Frequency-Comb Generation Based on Single-Tone Modulation and Four-Wave Mixing Effect in One Single Semiconductor Optical Amplifier
by Zeyu Tan and Lirong Huang
Photonics 2022, 9(10), 746; https://doi.org/10.3390/photonics9100746 - 9 Oct 2022
Viewed by 2558
Abstract
We propose a novel optical-frequency-comb (OFC) generation scheme based on single-tone modulation and the four-wave mixing (FWM) effect in one single semiconductor optical amplifier (SOA) modulated by a radio frequency (RF) current. A comprehensive broad-band dynamic model, which considers single-tone modulation and the [...] Read more.
We propose a novel optical-frequency-comb (OFC) generation scheme based on single-tone modulation and the four-wave mixing (FWM) effect in one single semiconductor optical amplifier (SOA) modulated by a radio frequency (RF) current. A comprehensive broad-band dynamic model, which considers single-tone modulation and the FWM effect, is presented. The simulated results show that, although only one single continuous-wave light is input into the SOA, an OFC with a large number of frequency components can be achieved as a result of single-tone modulation and the FWM effect in the SOA. The number of comb lines and the spectral bandwidth of the OFC increase by raising the amplitude of the RF modulation current. Increasing the input light power can increase the average optical power of the OFC. The frequency interval is tunable within a certain range by tuning the frequency of the RF modulation current injected into the SOA. Full article
Show Figures

Figure 1

11 pages, 2730 KiB  
Article
Influence of Gain Saturation Effect on Transverse Mode Instability Considering Four-Wave Mixing
by Haobo Li, Liangjin Huang, Hanshuo Wu, Zhiyong Pan and Pu Zhou
Photonics 2022, 9(8), 577; https://doi.org/10.3390/photonics9080577 - 17 Aug 2022
Cited by 2 | Viewed by 2137
Abstract
Transverse mode instability (TMI) has been recognized as onse of the primary limiting factors for the average power scaling of high-brightness fiber lasers. In this work, a static model of the TMI effect based on stimulated thermal Rayleigh scattering (STRS) is established while [...] Read more.
Transverse mode instability (TMI) has been recognized as onse of the primary limiting factors for the average power scaling of high-brightness fiber lasers. In this work, a static model of the TMI effect based on stimulated thermal Rayleigh scattering (STRS) is established while considering the four-wave mixing (FWM) effect. The focus of the model is to theoretically investigate the TMI phenomenon and threshold power dominated by FWM. The gain saturation effect and fiber laser system parameters, such as seed power, pumping direction, and core numerical aperture, which have not been considered in the previous perturbation theory model, are also investigated. This work will enrich the perturbation theory model and extend its application scope in TMI mitigation strategies, providing guidance for understanding and suppressing TMI. Full article
(This article belongs to the Special Issue Rare Earth Doped Fiber Lasers)
Show Figures

Figure 1

10 pages, 2809 KiB  
Article
Intermodal Four-Wave Mixing Process in Strain-Induced Birefringent Multimode Optical Fibers
by Michał Kwaśny, Paweł Mergo, Marek Napierała, Krzysztof Markiewicz and Urszula A. Laudyn
Materials 2022, 15(16), 5604; https://doi.org/10.3390/ma15165604 - 15 Aug 2022
Cited by 3 | Viewed by 1851
Abstract
Our study investigated the partially degenerate intermodal four-wave mixing (IM-FWM) process in nonlinear multimode optical fibers with strain-induced birefringence. The difference in the refractive index along the two orthogonal directions was due to the photoelastic effect that occurred when the fiber under test [...] Read more.
Our study investigated the partially degenerate intermodal four-wave mixing (IM-FWM) process in nonlinear multimode optical fibers with strain-induced birefringence. The difference in the refractive index along the two orthogonal directions was due to the photoelastic effect that occurred when the fiber under test (FUT) was subjected to uniformly applied diameter stress caused by winding on a cylinder of a given diameter. Our work analyzed how the nonlinear frequency conversion and the output modal field profiles depended on the degree of birefringence in FUT. The experimental results significantly affected the order of the excited moduli in fiber sections characterized by different amounts of birefringence. We also checked the efficiency of the FWM process for different polarizations of the pump beam to determine those for which the FWM process was most effective for the 532 nm sub-nanosecond pulses. More than 30% conversion efficiency was obtained for the FUTs with a length of tens of centimeters. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

8 pages, 8736 KiB  
Article
An Efficient Method for the Intermodal Four-Wave Mixing Process
by Michał Kwaśny, Paweł Mergo, Marek Napierała, Krzysztof Markiewicz and Urszula A. Laudyn
Materials 2022, 15(13), 4550; https://doi.org/10.3390/ma15134550 - 28 Jun 2022
Cited by 5 | Viewed by 1509
Abstract
We demonstrate a partially degenerated intermodal four-wave mixing (FWM) process realized in a few-mode nonlinear optical fiber, leading to the effective generation of visible red and blue light from 532 nm sub-nanosecond pulses. We present a self-seeded FWM configuration with a signal beam [...] Read more.
We demonstrate a partially degenerated intermodal four-wave mixing (FWM) process realized in a few-mode nonlinear optical fiber, leading to the effective generation of visible red and blue light from 532 nm sub-nanosecond pulses. We present a self-seeded FWM configuration with a signal beam obtained in the additional section of the same type of fiber that ensures perfect matching between the seed and the Stokes beams. Over 40% of the wavelength conversion efficiency in the FWM process was obtained using a fiber length shorter than 1 m. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

Back to TopTop