On-Chip Optical Signal Enhancement in Micro-Ring Resonators Using a NaYF4:Er3+-Doped Polymer Nanocomposite
Abstract
1. Introduction
2. Materials and Simulation of the Proposed Structure
2.1. Material Preparation and Characterization
2.2. Simulation of the Proposed Structure
3. Results
3.1. Fabrication of Active MRR
3.2. Characterization of the Active MRR
3.2.1. Propagation Loss Measurement
3.2.2. MRR Performance Measurement
3.2.3. Gain Performance Measurement
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| MRR | Micro-ring resonators |
| NPs | Nanoparticles |
| PMMA | Polymethyl methacrylate |
| Q factor | Quality factor |
| FSR | Free spectral range |
| PIC | Photonic integrated circuit |
| TEM | Transmission electron microscopy |
| FWHM | Full width at half maximum |
| DC | Directional coupler |
| SEM | Scanning electron microscopy |
| IL | Insertion loss |
References
- Almeida, V.R.; Barrios, C.A.; Panepucci, R.R.; Lipson, M. All-optical control of light on a silicon chip. Nature 2004, 431, 1081–1084. [Google Scholar] [CrossRef]
- Jalali, B.; Fathpour, S. Silicon Photonics. J. Light. Technol. 2006, 24, 4600–4615. [Google Scholar] [CrossRef]
- Soref, R. The Past, Present, and Future of Silicon Photonics. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 1678–1687. [Google Scholar] [CrossRef]
- Moss, D.J.; Morandotti, R.; Gaeta, A.L.; Lipson, M. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics 2013, 7, 597–607. [Google Scholar] [CrossRef]
- Roelkens, G.; Zhang, J.; Bogaert, L.; Soltanian, E.; Billet, M.; Uzun, A.; Pan, B.; Liu, Y.; Delli, E.; Wang, D.; et al. Present and future of micro-transfer printing for heterogeneous photonic integrated circuits. APL Photonics 2024, 9, 010901. [Google Scholar] [CrossRef]
- Guo, Z.; Lu, L.; Zhou, L.; Shen, L.; Chen, J. 16 × 16 Silicon Optical Switch Based on Dual-Ring-Assisted Mach–Zehnder Interferometers. J. Light. Technol. 2018, 36, 225–232. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Tsang, H.K. Tandem Configuration of Microrings and Arrayed Waveguide Gratings for a High-Resolution and Broadband Stationary Optical Spectrometer at 860 nm. ACS Photonics 2021, 8, 1251–1257. [Google Scholar] [CrossRef]
- Guo, R.; He, Q.; Zhang, Z.; Xu, Y.; Zhang, S.; Lang, Q.; Xiao, S.; Han, P.; Wang, J.; Ding, T.; et al. High-Q silicon microring resonator with ultrathin sub-wavelength thicknesses for sensitive gas sensing. Appl. Phys. Rev. 2024, 11, 021417. [Google Scholar] [CrossRef]
- Zuo, X.; Tang, Z.; Li, B.; Chen, X.; Sun, J. Quantum-Empowered Fiber Sensing Metrology. Photonics 2025, 12, 763. [Google Scholar] [CrossRef]
- Yang, L.; Dong, B.; Shao, Q.; Zhang, S.; Chen, Z. Short Carbon Nanotube Nano-Film-Based Polymer/SiO2 Hybrid Waveguide Micro-Ring Filter. ACS Appl. Mater. Interfaces 2023, 15, 28555–28562. [Google Scholar] [CrossRef]
- Zou, Y.; Moreel, L.; Lin, H.; Zhou, J.; Li, L.; Danto, S.; Musgraves, J.D.; Koontz, E.; Richardson, K.; Dobson, K.D.; et al. Solution Processing and Resist-Free Nanoimprint Fabrication of Thin Film Chalcogenide Glass Devices: Inorganic—Organic Hybrid Photonic Integration. Adv. Opt. Mater. 2014, 2, 759–764. [Google Scholar] [CrossRef]
- Lin, W.K.; Liu, S.; Lee, S.; Zhang, Z.; Wang, X.; Xu, G.; Guo, L.J. High Q-Factor Polymer Microring Resonators Realized by Versatile Damascene Soft Nanoimprinting Lithography. Adv. Funct. Mater. 2024, 34, 2312229. [Google Scholar] [CrossRef]
- Wang, P.-H.; Wang, S.-P.; Hou, N.-L.; Yang, Z.-R.; Huang, W.-H.; Lee, T.-H. Flexible dispersion engineering using polymer patterning in nanophotonic waveguides. Sci. Rep. 2023, 13, 13211. [Google Scholar] [CrossRef]
- Bao, R.; Fang, Z.; Liu, J.; Liu, Z.; Chen, J.; Wang, M.; Wu, R.; Zhang, H.; Cheng, Y. An Erbium-Doped Waveguide Amplifier on Thin Film Lithium Niobate with an Output Power Exceeding 100 mW. Laser Photonics Rev. 2024, 19, 2400765. [Google Scholar] [CrossRef]
- Singh, N.; Lorenzen, J.; Wang, K.; Gaafar, M.A.; Sinobad, M.; Francis, H.; Edelmann, M.; Geiselmann, M.; Herr, T.; Garcia-Blanco, S.M.; et al. Watt-class silicon photonics-based optical high-power amplifier. Nat. Photonics 2025, 19, 307–314. [Google Scholar] [CrossRef]
- Bonneville, D.B.; Osornio-Martinez, C.E.; Dijkstra, M.; García-Blanco, S.M. High on-chip gain spiral Al2O3:Er3+ waveguide amplifiers. Opt. Express 2024, 32, 15527–15536. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Song, H.; Zhao, D.; Yang, Y.; Wang, S.; Yan, J.; Wei, J.; Wang, X.; Qin, G.; Wang, F.; et al. Strip loaded waveguide amplifiers based on erbium-doped nanocomposites with 17 dB internal net gain. Opt. Express 2024, 32, 7931–7939. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Man, Y.; He, Y.; Xu, H.; Zhang, B.; Yu, D.; Lin, Z.; Lv, Z.; Zhao, Z.; Zhang, L.; et al. Optical Amplification at 1.5 µm in ErIII Coordination Polymer-Doped Waveguides Based on Intramolecular Energy Transfer. Adv. Sci. 2024, 11, e2401131. [Google Scholar] [CrossRef]
- Fu, Y.; Sun, T.; Li, J.; Tang, Y.; Yang, Y.; Tao, S.; Wang, F.; Zhang, D.; Qin, G.; Jia, Z.; et al. (S + C)-band polymer waveguide amplifier based on Tm3+ and Er3+ layer-doped core-shell nanoparticles. Opt. Lett. 2023, 48, 391–394. [Google Scholar] [CrossRef]
- Cui, H.; Jiang, Z.; Yang, Y.; Tao, S.; Wu, S.; Yin, J.; Wang, F.; Qin, G.; Meng, F.; Zhao, D.; et al. A strategy for preparing broadband polymer based optical waveguide amplifiers: Doping low crystal field symmetric nanocrystals in polymer matrix as gain media. Sci. China Mater. 2024, 67, 3908–3916. [Google Scholar] [CrossRef]
- Zhang, Y.-W.; Sun, X.; Si, R.; You, L.-P.; Yan, C.-H. Single-Crystalline and Monodisperse LaF3 Triangular Nanoplates from a Single-Source Precursor. J. Am. Chem. Soc. 2005, 127, 3260–3261. [Google Scholar] [CrossRef]
- Wang, F.; Han, Y.; Lim, C.S.; Lu, Y.; Wang, J.; Xu, J.; Chen, H.; Zhang, C.; Hong, M.; Liu, X. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463, 1061–1065. [Google Scholar] [CrossRef]
- Yang, Y.; Tao, S.; Li, J.; Jiang, Z.; Cui, H.; Ren, X.; Yin, J.; Wang, F.; Qin, W.; Zhao, D. Effect of inorganic compound size on the relative gain of polymer-based optical waveguide amplifiers. J. Lumin. 2025, 277, 120872. [Google Scholar] [CrossRef]
- Li, S.F.; Song, C.L.; Xiong, Q.J.; Ran, B. A numerical analysis of gain characteristics of Er-doped Al2O3 waveguide amplifiers. Opt. Quantum Electron. 2002, 34, 859–866. [Google Scholar] [CrossRef]
- Toccafondo, V.; Cerqueira, A.; Faralli, S.; Sani, E.; Toncelli, A.; Tonelli, M.; Di Pasquale, F. Er3+-doped BaY2F8 crystal waveguides for broadband optical amplification at 1.5 μm. J. Appl. Phys. 2007, 101, 023104. [Google Scholar] [CrossRef]
- Tao, S.; Yan, J.; Song, H.; Wei, J.; Fu, Y.; Zhao, D.; Wang, F.; Zhang, D. Modeling and simulation of erbium-ytterbium co-doped optical waveguide amplifiers with dual-wavelength pumping at 980 nm and 1480 nm. J. Phys. D Appl. Phys. 2023, 56, 344003. [Google Scholar] [CrossRef]
- Frankis, H.C.; Kiani, K.M.; Su, D.; Mateman, R.; Leinse, A.; Bradley, J.D.B. High-Q tellurium-oxide-coated silicon nitride microring resonators. Opt. Lett. 2018, 44, 118–121. [Google Scholar] [CrossRef]
- Little, B.E.; Chu, S.T.; Haus, H.A.; Foresi, J.; Laine, J.P. Microring resonator channel dropping filters. J. Light. Technol. 1997, 15, 998–1005. [Google Scholar] [CrossRef]
- Makela, M.; Lin, Z.; Coté, G.L.; Lin, P.T. Fluorescence enhanced biomolecule detection using direct laser written micro-ring resonators. Opt. Laser Technol. 2024, 174, 110629. [Google Scholar] [CrossRef]
- Zhang, R.; Zeng, X.; Zheng, X.; Yang, C.; Zheng, D.; Liu, H.; Yu, X.; Gao, F.; Bo, F.; Kong, Y.; et al. Nonlinear optical oscillation in on-chip erbium-doped lithium niobate microring resonators. Sci. China Phys. Mech. Astron. 2025, 68, 244212. [Google Scholar] [CrossRef]







| Mode | Effective Index | Effective Area | Modal Overlap | Mode Loss |
|---|---|---|---|---|
| Fundamental mode | 1.518 | 4.8 μm2 | 0.988 | 2.83 dB/cm |
| Device Type | Material | Waveguide Type | Pump Wavelength | Gain | Q | Year | Source |
|---|---|---|---|---|---|---|---|
| Amplifier and MRR | Er-doped polymer | Rectangular | 1480 nm | 8.92 dB @1527 nm | This work | ||
| Amplifier | Er3+, Yb3+ co-doped nanocomposites | Strip loaded | 980 nm | 17 dB @1530 nm | - | 2024 | [17] |
| Amplifier | ErIII complexes | Evanescent-field | 365 nm | 10.5 dB @1535 nm | - | 2024 | [18] |
| Amplifier | Er3+, Yb3+, Tm3+ co-doped polymer | Rectangular | 980 nm | 6-8 dB @ S+C Band | - | 2023 | [19] |
| Amplifier | Er3+, Yb3+, Ce3+ co-doped polymer | Rectangular | 980 nm | 12.6 dB @1535 nm 3.7 dB @ 1610 nm | - | 2024 | [20] |
| MRR | Polymer | Rectangular | - | - | 2024 | [29] | |
| MRR Laser | Er-doped LNOI | Ridge | - | - | 2025 | [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wang, Z.; Li, C.; Li, G.; Han, H.; Gu, S.; Wang, F.; Zhang, D. On-Chip Optical Signal Enhancement in Micro-Ring Resonators Using a NaYF4:Er3+-Doped Polymer Nanocomposite. Photonics 2026, 13, 200. https://doi.org/10.3390/photonics13020200
Wang Z, Li C, Li G, Han H, Gu S, Wang F, Zhang D. On-Chip Optical Signal Enhancement in Micro-Ring Resonators Using a NaYF4:Er3+-Doped Polymer Nanocomposite. Photonics. 2026; 13(2):200. https://doi.org/10.3390/photonics13020200
Chicago/Turabian StyleWang, Zheng, Changlong Li, Guanlin Li, Hengyuan Han, Shaozhi Gu, Fei Wang, and Daming Zhang. 2026. "On-Chip Optical Signal Enhancement in Micro-Ring Resonators Using a NaYF4:Er3+-Doped Polymer Nanocomposite" Photonics 13, no. 2: 200. https://doi.org/10.3390/photonics13020200
APA StyleWang, Z., Li, C., Li, G., Han, H., Gu, S., Wang, F., & Zhang, D. (2026). On-Chip Optical Signal Enhancement in Micro-Ring Resonators Using a NaYF4:Er3+-Doped Polymer Nanocomposite. Photonics, 13(2), 200. https://doi.org/10.3390/photonics13020200

