Rapid Measurement of Liquid Diffusion Coefficients of β-Alanine Varying with Concentration at Different Temperatures
Abstract
1. Introduction
2. Experimental Principles and Theoretical Analysis
2.1. Experimental Setup and Imaging Principle
2.2. Theoretical Basis for the Shift of Equivalent Refractive Index Slice Method
2.3. Theoretical Basis for the Finite Difference Numerical Calculation Method
3. Data Analysis and Results
3.1. Measurement Results Using the Shift of Equivalent Refractive Index Slice Method
3.2. Measurement of the D(C) Relationship Using the Finite Difference Numerical Calculation Comparison Method
3.3. Comparison of Measurement Results from the Two Methods
3.4. Dependence of Diffusion Coefficient on Temperature
3.5. Simulation Results of Diffusion
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saffioti, N.R.; Paul, S.; Farias, L.O.D.; da Silva, R.P.; Silva, V.d.E.; Nemezio, K.; Yamaguchi, G.; Artioli, G.G.; Gualano, B.; Saunders, B.; et al. The Muscle Carnosine Response to Beta-Alanine Supplementation: A Systematic Review With Bayesian Individual and Aggregate Data E-Max Model and Meta-Analysis. Front. Physiol. 2020, 11, 913. [Google Scholar] [CrossRef]
- Bellinger, M.P. β-Alanine supplementation for athletic performance: An update. J. Strength Cond. Res. 2014, 28, 1751–1770. [Google Scholar] [CrossRef]
- Min, Y.; Luchuanyang, S.; Yasunosuke, K.; Murayama, F.; Maegawa, T.; Nikawa, T.; Hirasaka, K. Balenine, Imidazole Dipeptide Promotes Skeletal Muscle Regeneration by Regulating Phagocytosis Properties of Immune Cells. Mar. Drugs 2022, 20, 313. [Google Scholar] [CrossRef] [PubMed]
- Wen, W.; Zhao, H.; Zhang, S.; Pires, V. Rapid photoelectrochemical method for in situ determination of effective diffusion coefficient of organic compounds. J. Phys. Chem. C 2008, 112, 3875–3880. [Google Scholar] [CrossRef]
- Klein, T.; Kankanamge, J.C.; Koller, M.T.; Rausch, M.H.; Fröba, A.P.; Assael, M.J.; Wakeham, W.A.; Guevara-Carrion, G.; Vrabec, J. Definitions and preferred symbols for mass diffusion coefficients in multicomponent fluid mixtures including electrolytes (IUPAC Technical Report). Pure Appl. Chem. 2025, 97, 689–713. [Google Scholar] [CrossRef]
- Sun, W.; Chen, X.; Wu, L.; Hu, Y.; Zhang, W. Analysis of the Distribution and Influencing Factors of Diffusion Coefficient Model Parameters Based on Molecular Dynamics Simulations. ACS Omega 2023, 8, 22536–22544. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Vanderheyden, Y.; Adams, E.; Desmet, G.; Cabooter, D. Extensive database of liquid phase diffusion coefficients of some frequently used test molecules in reversed-phase liquid chromatography and hydrophilic interaction liquid chromatography. J. Chromatogr. A 2016, 1455, 102–112. [Google Scholar] [CrossRef]
- Trusler, J.P.M. Measurement of Difision, Coeficients im, Bimary vixtures and Solutions by the Taylor Dispersion Method. Int. J. Thermophys. 2024, 45, 46. [Google Scholar] [CrossRef]
- Yong, G.P. Diffusion coefficient for diffusion of time-varying surface concentration by the film-roll method. Text. Res. J. 2022, 92, 1891–1908. [Google Scholar] [CrossRef]
- Breer, J.; de Groot, K.; Schönert, H. Diffusion in the Diaphragm Cell: Continuous Monitoring of the Concentrations and Determination of the Differential Diffusion Coefficient. J. Solut. Chem. 2014, 43, 71–82. [Google Scholar] [CrossRef]
- Torres, J.F.; Komiya, A.; Shoji, E.; Okajima, J.; Maruyama, S. Development of phase-shifting interferometry for measurement of isothermal diffusion coefficients in binary solutions. Opt. Laser Eng. 2012, 50, 1287–1296. [Google Scholar] [CrossRef]
- He, M.; Zhang, S.; Zhang, Y.; Peng, S.G. Development of measuring diffusion coefficients by digital holographic interferometry in transparent liquid mixtures. Opt. Express 2015, 23, 10884–10899. [Google Scholar] [CrossRef]
- Eva, R.; Jan, V.; Agnes, L.; Werquin, S.; Bienstman, P.; Baets, R. Measurement of small molecule diffusion with an optofluidic silicon chip. Lab Chip 2013, 13, 4392–4399. [Google Scholar] [CrossRef]
- Wei, L.; Meng, W.D.; Sun, L.C.; Cao, X.-F.; Pu, X.-Y. Measurement and verification of concentration-dependent diffusion coefficient: Ray tracing imagery of diffusion process. Chin. Phys. B 2020, 29, 084206. [Google Scholar] [CrossRef]
- Daniel, B.; Oliver, G.; Kerstin, M.; Hasse, H. Diffusion coefficients at infinite dilution of carbon dioxide and methane in water, ethanol, cyclohexane, toluene, methanol, and acetone: A PFG-NMR and MD simulation study. J. Chem. Thermodyn. 2022, 166, 106691. [Google Scholar] [CrossRef]
- Li, W.; Pu, X.; Cheng, D. Optical measurement of concentration-dependent diffusion coefficient by tracing diffusion image width. Optik 2022, 270, 169918. [Google Scholar] [CrossRef]
- Huang, R.T.; Long, L.; Yang, H.Y.; Chen, Y.; Deng, Q.; Ju, W.; Li, Z. In situ monitoring of non-Fickian liquid-liquid diffusion with a high space-time resolution fiber-integrated plasmonic sensor. ACS Photonics 2024, 11, 780–788. [Google Scholar] [CrossRef]
- Girault, P.; Lemaitre, J.; Guendouz, M.; Lorrain, N.; Poffo, L.; Gadonna, M.; Bosc, D. Micro-resonators based on integrated polymer technology for optical sensing. In SPIE: Optical Sensing and Detection III; Berghmans, F., Mignani, A.G., DeMoor, P., Eds.; SPIE: Brussels, Belgium, 2014; Volume 9141, p. 914121. [Google Scholar] [CrossRef]
- Wei, L.; Meng, W.; Chen, Y.; He, B.; Zhou, Q.; Pu, X. Optical measurement of concentration-dependent diffusion coefficients of binary solution using an asymmetric liquid-core cylindrical lens. Opt. Laser Eng. 2020, 126, 105867. [Google Scholar] [CrossRef]
- Meng, W.; Xia, Y.; Song, F.; Pu, X. Double liquid-core cylindrical lens utilized to measure liquid diffusion coefficient. Opt. Express 2017, 25, 5626–5640. [Google Scholar] [CrossRef]
- Meng, W.; Xia, Y.; Chen, Y.; Pu, X. Measuring the mutual diffusion coefficient of heavy water in normal water using a double liquid-core cylindrical lens. Sci. Rep. 2018, 8, 12610. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.C.; Wang, D.Y.; Guo, J.; Zhou, Y.; Hu, D.; Sheng, S. Design and application of a spherical aberration free continuous zoom liquid-filled micro-cylindrical lenses system. Opt. Eng. 2022, 61, 085102. [Google Scholar] [CrossRef]
- Wang, D.; Hu, D.; Zhou, Y.; Sun, L. Design and fabrication of a focus-tunable liquid cylindrical lens based on electrowetting. Opt. Express 2022, 30, 47430–47439. [Google Scholar] [CrossRef] [PubMed]
- Yui, K.; Noda, Y.; Koido, M. Binary Diffusion Coefficients of Aqueous Straight-Chain Amino Acids at Infinitesimal Concentration and Temperatures from (298.2 to 333.2) K. J. Chem. Eng. Data 2013, 58, 2848–2853. [Google Scholar] [CrossRef]
- Donoian, H.C.; Kegeles, G. The diffusion of beta-alanine in water at 25°. J. Am. Chem. Soc. 1961, 83, 255–259. [Google Scholar] [CrossRef]
- Albright, J.G. Measurements of the intradiffusion coefficients at 25° of the ternary systems (labeled L-α-alanine)-(DL-α-alanine)-water and (labeled β-alanine)-(β-alanine)-water. J. Phys. Chem. 1966, 70, 2299–2306. [Google Scholar] [CrossRef]
- Yu, Z.L.; Zhang, Z. The diffusion behaviors in Mg/Al interface under variated temperatures and surface roughness. Phase Transit. 2025, 98, 85–108. [Google Scholar] [CrossRef]
- Fujiyabu, T.; Sakai, T.; Kudo, R.; Yoshikawa, Y.; Katashima, T.; Chung, U.-I.; Sakumichi, N. Temperature dependence of polymer network diffusion. Phys. Rev. Lett. 2021, 127, 237801. [Google Scholar] [CrossRef]
- Nahavandian, M.; Sarkar, S.; Bagchi, S.; Perez, D.; Martinez, E. From anti-Arrhenius to Arrhenius behavior in a dislocation-obstacle bypass: Atomistic simulations and theoretical investigation. Comput. Mater. Sci. 2024, 239, 112954. [Google Scholar] [CrossRef]
- Dora, T.L.; Singh, S.K.; Kriti; Mishra, R.R.; Verma, A. Synergistic effects of temperature and strain rate on tensile properties of simulated Ni-6Cu alloy with Σ3 non-Arrhenius grain boundary. Mol. Simul. 2024, 50, 547–559. [Google Scholar] [CrossRef]
- Meng, W.-D.; Sun, L.-C.; Zhai, Y.; Yang, R.-F.; Pu, X.-Y. Rapid measurement of the diffusion coefficient of liquidsusing a liquid-core cylindrical lens: A method foranalysing an instantaneous diffusive picture. Acta Phys. Sin. 2015, 64, 155–161. [Google Scholar] [CrossRef]
- Xia, Y.; Meng, W.; Chen, Y.; Song, F.; Pu, X. Measurement of Liquid Diffusion Coefficient Based on Double Liquid-Core Cylindrical Lens: Equivalent Observation Altitude Measurement Method. Acta Opt. Sin. 2018, 38, 163–169. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, R.; Zhao, Q.; Mneg, W.; Pu, X. A new method for measuring liquid refractive index byanalyzing a defocused image of liquid-core cylindrical lens. Coll. Phys. 2022, 41, 21–26. [Google Scholar] [CrossRef]
- Fattahpour, S.; Kadkhodaei, S. Improving ab initio diffusion calculations in materials through Gaussian process regression. Phys. Rev. Mater. 2024, 8, 013804. [Google Scholar] [CrossRef]
- Rana, A.; Renault, C.; Dick, J.E. Measuring Liquid-into-Liquid Diffusion Coefficients by Dissolving Microdroplet Electroanalysis. Anal. Chem. 2023, 95, 18748–18753. [Google Scholar] [CrossRef] [PubMed]









| T/K | Fitting Expression | R2 |
|---|---|---|
| 288.15 | C = 65.354 × n − 87.201 | 0.9997 |
| 293.15 | C = 65.890 × n − 87.896 | 0.9995 |
| 298.15 | C = 65.717 × n − 87.629 | 0.9998 |
| 303.15 | C = 65.749 × n − 87.631 | 0.9994 |
| 308.15 | C = 65.636 × n − 87.434 | 0.9994 |
| 313.15 | C = 65.756 × n − 87.547 | 0.9995 |
| 318.15 | C = 65.879 × n − 87.676 | 0.9994 |
| C (mol/L) | 0.0 | 0.5 | 1.0 | 2.0 | 3.0 | |
|---|---|---|---|---|---|---|
| T/K D | ||||||
| 288.15 | 0.73 | 0.68 | 0.64 | 0.58 | 0.51 | |
| 293.15 | 0.83 | 0.78 | 0.75 | 0.66 | 0.58 | |
| 298.15 | 0.94 | 0.88 | 0.84 | 0.75 | 0.66 | |
| 303.15 | 1.06 | 1.00 | 0.95 | 0.84 | 0.74 | |
| 308.15 | 1.20 | 1.13 | 1.09 | 0.96 | 0.84 | |
| 313.15 | 1.35 | 1.25 | 1.20 | 1.07 | 0.94 | |
| 318.15 | 1.48 | 1.40 | 1.32 | 1.21 | 1.07 | |
| T/K | RI = nc | n ≤ nc | n > nc | R2 | |
|---|---|---|---|---|---|
| n ≤ nc | n > nc | ||||
| 288.15 | 1.3628 | n = (106,859 − Wi)/78,548 | n = (102,295 + Wi)/75,186 | 0.9996 | 0.9992 |
| 293.15 | 1.3621 | n = (109,864 − Wi)/80,820 | n = (102,277 + Wi)/75,187 | 0.9997 | 0.9998 |
| 298.15 | 1.3616 | n = (105,027 − Wi)/77,271 | n = (102,164 + Wi)/75,158 | 0.9997 | 0.9994 |
| 303.15 | 1.3601 | n = (103,671 − Wi)/76,225 | n = (102,436 + Wi)/75,303 | 0.9996 | 0.9994 |
| 308.15 | 1.3593 | n = (109,614 − Wi)/80,782 | n = (102,310 + Wi)/75,321 | 0.9999 | 0.9997 |
| 313.15 | 1.3583 | n = (112,310 − Wi)/82,836 | n = (104,440 + Wi)/76,975 | 0.9994 | 0.9997 |
| 318.15 | 1.3574 | n = (108,896 − Wi)/80,348 | n = (105,630 + Wi)/77,925 | 0.9997 | 0.9994 |
| C (mol/L) | 290 | 300 | 310 | 320 | 330 | 340 | 350 | 360 min | σ/×10−5 | |
|---|---|---|---|---|---|---|---|---|---|---|
| 0.0 | 0.936 | 0.936 | 0.936 | 0.936 | 0.936 | 0.936 | 0.936 | 0.936 | 0.936 | 0.000 |
| 0.5 | 0.894 | 0.895 | 0.895 | 0.895 | 0.895 | 0.896 | 0.894 | 0.894 | 0.895 | 0.001 |
| 1.0 | 0.851 | 0.853 | 0.854 | 0.854 | 0.854 | 0.855 | 0.851 | 0.851 | 0.853 | 0.002 |
| 1.5 | 0.808 | 0.811 | 0.813 | 0.812 | 0.813 | 0.814 | 0.808 | 0.809 | 0.811 | 0.002 |
| 2.0 | 0.764 | 0.768 | 0.771 | 0.770 | 0.771 | 0.773 | 0.765 | 0.767 | 0.769 | 0.003 |
| 2.5 | 0.720 | 0.725 | 0.728 | 0.728 | 0.728 | 0.731 | 0.721 | 0.725 | 0.726 | 0.004 |
| 3.0 | 0.675 | 0.681 | 0.685 | 0.685 | 0.685 | 0.689 | 0.677 | 0.682 | 0.682 | 0.005 |
| 3.5 | 0.629 | 0.636 | 0.641 | 0.641 | 0.642 | 0.646 | 0.632 | 0.640 | 0.638 | 0.005 |
| 4.0 | 0.583 | 0.590 | 0.596 | 0.596 | 0.597 | 0.602 | 0.588 | 0.598 | 0.594 | 0.006 |
| 4.5 | 0.535 | 0.543 | 0.550 | 0.551 | 0.552 | 0.558 | 0.543 | 0.556 | 0.548 | 0.008 |
| 5.0 | 0.487 | 0.496 | 0.503 | 0.505 | 0.506 | 0.512 | 0.497 | 0.513 | 0.502 | 0.009 |
| 5.4 | 0.447 | 0.457 | 0.465 | 0.467 | 0.468 | 0.476 | 0.461 | 0.480 | 0.465 | 0.010 |
| k1 | −0.0900 | −0.0876 | −0.0865 | −0.0871 | −0.0869 | −0.0900 | −0.0902 | −0.0903 | −0.0886 | - |
| k2 | −0.0007 | −0.0008 | −0.0007 | −0.0005 | −0.0005 | −0.0002 | −0.0007 | 0.0000 | −0.0005 | - |
| k3 | −0.0001 | −0.0001 | −0.0001 | −0.0001 | −0.0001 | 0.0000 | 0.0000 | 0.0000 | −0.0001 | - |
| T/K | D(C)/cm2·s−1/×10−5 |
|---|---|
| 288.15 | 0.7314 × (1 − 0.0812C − 0.0011C2 − 0.0001C3) |
| 293.15 | 0.8346 × (1 − 0.0824C − 0.0018C2 − 0.0002C3) |
| 303.15 | 1.0589 × (1 − 0.0857C − 0.0016C2 − 0.0003C3) |
| 308.15 | 1.2033 × (1 − 0.0848C − 0.0018C2 − 0.0002C3) |
| 313.15 | 1.3504 × (1 − 0.0884C − 0.0016C2 − 0.0002C3) |
| 318.15 | 1.4819 × (1 − 0.0840C − 0.0015C2 − 0.0002C3) |
| C (mol/L) | 0 | 0.5 | 1 | 2 | 3 |
|---|---|---|---|---|---|
| Ea | 18,183.8 | 18,307.7 | 18,389.2 | 18,618.7 | 18,673.5 |
| A | 7.2749 | 7.2597 | 7.2445 | 7.2228 | 7.1163 |
| R2 | 0.9995 | 0.9997 | 0.9976 | 0.9995 | 0.9994 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Geng, B.; Cao, X.; Li, Y.; Pu, X.; Meng, W. Rapid Measurement of Liquid Diffusion Coefficients of β-Alanine Varying with Concentration at Different Temperatures. Photonics 2026, 13, 132. https://doi.org/10.3390/photonics13020132
Geng B, Cao X, Li Y, Pu X, Meng W. Rapid Measurement of Liquid Diffusion Coefficients of β-Alanine Varying with Concentration at Different Temperatures. Photonics. 2026; 13(2):132. https://doi.org/10.3390/photonics13020132
Chicago/Turabian StyleGeng, Bolin, Xinfei Cao, Yuan Li, Xiaoyun Pu, and Weidong Meng. 2026. "Rapid Measurement of Liquid Diffusion Coefficients of β-Alanine Varying with Concentration at Different Temperatures" Photonics 13, no. 2: 132. https://doi.org/10.3390/photonics13020132
APA StyleGeng, B., Cao, X., Li, Y., Pu, X., & Meng, W. (2026). Rapid Measurement of Liquid Diffusion Coefficients of β-Alanine Varying with Concentration at Different Temperatures. Photonics, 13(2), 132. https://doi.org/10.3390/photonics13020132
