Infrared Optical Vortices Generation with Holographic Optical Elements Recorded in Bayfol HX200 Photopolymer
Abstract
1. Introduction
2. Materials and Methods
2.1. Generation of Optical Vortices with a Spatial Light Modulator (SLM)
2.2. Design and Recording of Holographic Optical Elements
2.3. Characterization of Holographic Optical Elements
3. Results and Discussion
3.1. Optical Vortex Generation with a Spatial Light Modulator
3.2. Characterization of the Resulting Holographic Optical Element
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 1992, 45, 8185–8189. [Google Scholar] [CrossRef] [PubMed]
- Beijersbergen, M.W.; Coerwinkel, R.P.C.; Kristensen, M.; Woerdman, J.P. Helical-wavefront laser beams produced with a spiral phaseplate. Opt. Commun. 1994, 112, 321–327. [Google Scholar] [CrossRef]
- Beijersbergen, M.W.; Allen, L.; van der Veen, H.E.L.O.; Woerdman, J.P. Astigmatic laser mode converters and transfer of orbital angular momentum. Opt. Commun. 1993, 96, 123–132. [Google Scholar] [CrossRef]
- Marrucci, L.; Manzo, C.; Paparo, D. Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media. Phys. Rev. Lett. 2006, 96, 163905. [Google Scholar] [CrossRef] [PubMed]
- Bazhenov, V.Y.; Soskin, M.S.; Vasnetsov, M.V. Screw Dislocations in Light Wavefronts. J. Mod. Opt. 1992, 39, 985–990. [Google Scholar] [CrossRef]
- Tao, S.H.; Lee, W.M.; Yuan, X.-C. Dynamic optical manipulation with a higher-order fractional Bessel beam generated from a spatial light modulator. Opt. Lett. 2003, 28, 1867–1869. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Zhong, S.; Lu, Y.; Zeng, K.; Ling, F.; Xu, L.; Liu, Y.; Chen, W.; Jiang, X. Vortex beam dynamic speckle interference microscopy. Opt. Lett. 2025, 50, 3676–3679. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Jiang, W.; Guo, L.; Li, J.; Forbes, A. Metrology with a twist: Probing and sensing with vortex light. Light Sci. Appl. 2025, 14, 4. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ren, Y.-X.; Chen, M.; Arita, Y.; Rosales-Guzmán, C. Optical trapping with structured light: A review. Adv. Photonics 2021, 3, 034001. [Google Scholar] [CrossRef]
- Rosen, G.F.Q.; Tamborenea, P.I.; Kuhn, T. Interplay between optical vortices and condensed matter. Rev. Mod. Phys. 2022, 94, 035003. [Google Scholar] [CrossRef]
- Erhard, M.; Fickler, R.; Krenn, M.; Zeilinger, A. Twisted photons: New quantum perspectives in high dimensions. Light Sci. Appl. 2017, 7, 17146. [Google Scholar] [CrossRef] [PubMed]
- Sola, I.J.; Collados, V.; Plaja, L.; Méndez, C.; Román, J.S.; Ruiz, C.; Arias, I.; Villamarín, A.; Atencia, J.; Quintanilla, M.; et al. High power vortex generation with volume phase holograms and non-linear experiments in gases. Appl. Phys. B 2008, 91, 115–118. [Google Scholar] [CrossRef]
- Willner, A.E.; Pang, K.; Song, H.; Zou, K.; Zhou, H. Orbital angular momentum of light for communications. Appl. Phys. Rev. 2021, 8, 041312. [Google Scholar] [CrossRef]
- Ma, M.; Lian, Y.; Wang, Y.; Lu, Z. Generation, Transmission and Application of Orbital Angular Momentum in Optical Fiber: A Review. Front. Phys. 2021, 9, 773505. [Google Scholar] [CrossRef]
- Wang, J.; Chen, S.; Liu, J. Orbital angular momentum communications based on standard multi-mode fiber (invited paper). APL Photonics 2021, 6, 060804. [Google Scholar] [CrossRef]
- Atencia, J.; Collados, M.-V.; Quintanilla, M.; Marín-Sáez, J.; Sola, Í.J. Holographic optical element to generate achromatic vórtices. Opt. Express 2013, 21, 21056–21061. [Google Scholar] [CrossRef] [PubMed]
- Covestro Deutschland AG. Bayfol HX200 Datasheet. Available online: https://solutions.covestro.com/es/products/bayfol/bayfol-hx200_000000000086194384?SelectedCountry=ES (accessed on 18 September 2025).
- Sacks, Z.S.; Rozas, D.; Swartzlander, G.A., Jr. Holographic formation of optical-vortex filaments. J. Opt. Soc. Am. B 1998, 15, 2226–2234. [Google Scholar] [CrossRef]
- Syms, R. Practical Volume Holography; Oxford University Press: Oxford, UK, 1990. [Google Scholar]
- Marín-Sáez, J.; Atencia, J.; Chemisana, D.; Collados, M.-V. Full modeling and experimental validation of cylindrical holographic lenses recorded in Bayfol HX photopolymer and partly operating in the transition regime for solar concentration. Opt. Express 2018, 26, A398–A412. [Google Scholar] [CrossRef] [PubMed]
- Marín-Sáez, J.; Atencia, J.; Chemisana, D.; Collados, M.-V. Characterization of volume holographic optical elements recorded in Bayfol HX photopolymer for solar photovoltaic applications. Opt. Express 2016, 24, A720–A730. [Google Scholar] [CrossRef] [PubMed]
- Kogelnik, H. Coupled wave theory for thick hologram gratings. Bell Syst. Tech. J. 1969, 48, 2909–2947. [Google Scholar] [CrossRef]
- Hecht, E. Optics; Addison Wesley: Boston, MA, USA, 1998. [Google Scholar]
Recording Wavelength (nm) | θ1, air (°) | θ2, air (°) | Λ (μm) | Exposure Dosage (mJ/cm2) |
---|---|---|---|---|
532 | 16.0 | −16.0 | 0.965 | 16.0 |
Reconstruction Wavelength (nm) | θ0, Bragg, air (°) | Theoretical Efficiency (%) | Experimental Efficiency (%) |
---|---|---|---|
532 | 16.0 | 55 | 55 |
1534 | 52.6 | 64 | 45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paredes-Amorín, Á.; Marín-Sáez, J.; Collados, M.-V.; Atencia, J. Infrared Optical Vortices Generation with Holographic Optical Elements Recorded in Bayfol HX200 Photopolymer. Photonics 2025, 12, 940. https://doi.org/10.3390/photonics12090940
Paredes-Amorín Á, Marín-Sáez J, Collados M-V, Atencia J. Infrared Optical Vortices Generation with Holographic Optical Elements Recorded in Bayfol HX200 Photopolymer. Photonics. 2025; 12(9):940. https://doi.org/10.3390/photonics12090940
Chicago/Turabian StyleParedes-Amorín, Álvaro, Julia Marín-Sáez, María-Victoria Collados, and Jesús Atencia. 2025. "Infrared Optical Vortices Generation with Holographic Optical Elements Recorded in Bayfol HX200 Photopolymer" Photonics 12, no. 9: 940. https://doi.org/10.3390/photonics12090940
APA StyleParedes-Amorín, Á., Marín-Sáez, J., Collados, M.-V., & Atencia, J. (2025). Infrared Optical Vortices Generation with Holographic Optical Elements Recorded in Bayfol HX200 Photopolymer. Photonics, 12(9), 940. https://doi.org/10.3390/photonics12090940