Early Detection of Cardiovascular Disease Using Laser-Induced Breakdown Spectroscopy Combined with Machine Learning
Abstract
1. Introduction
2. Materials and Methods
2.1. LIBS System
2.2. Samples Collection and Preparation
3. Data Classification Methods
3.1. Data Preprocessing
3.2. Elemental Analysis of LIBS
4. Results
4.1. Discrimination Analysis
4.2. Multivariate Data Analysis
4.2.1. Machine Learning Methods
4.2.2. Comparison of Classification Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CVD | Cardiovascular disease |
LIBS | Laser induced breakdown spectroscopy |
Nd:YAG | Neodymium-doped Yttrium aluminum garnet |
WHO | World health organization |
ECG | Echocardiogram |
MRI | Magnetic resonance imaging |
ML | Machine learning |
PCA | Principal component analysis |
NN | Neural networks |
SVM | Support vector machine |
ECS | Ensembles classifiers |
CNN | Convolutional neural networks |
k-NN | k-nearest neighbor |
LDA | Linear discriminant analysis |
DT | Decision tree |
CAD | Coronary artery disease |
DVT | Deep venous thrombosis |
SNR | Signal to noise ratio |
VICs | Valvular interstitial cells |
References
- Baghdadi, N.A.; Farghaly Abdelaliem, S.M.; Malki, A.; Gad, I.; Ewis, A.; Atlam, E. Advanced machine learning techniques for cardiovascular disease early detection and diagnosis. J. Big Data 2023, 10, 144. [Google Scholar] [CrossRef]
- Azmi, J.; Arif, M.; Nafis, M.T.; Alam, M.A.; Tanweer, S.; Wang, G. A systematic review on machine learning approaches for cardiovascular disease prediction using medical big data. Med. Eng. Phys. 2022, 105, 103825. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.M.; Lokesh, S.; Varatharajan, R.; Babu, G.C.; Parthasarathy, P. Cloud and IoT based disease prediction and diagnosis system for healthcare using Fuzzy neural classifier. Future Gener. Comput. Syst. 2018, 86, 527–534. [Google Scholar] [CrossRef]
- Paudel, P.; Karna, S.K.; Saud, R.; Regmi, L.; Thapa, T.B.; Bhandari, M. Unveiling key predictors for early heart attack detection using machine learning and explainable AI technique with LIME. In Proceedings of the 10th International Conference on Networking, Systems and Security, Dhaka, Bangladesh, 21 December 2023; pp. 69–78. [Google Scholar]
- Gidding, S.S.; Lloyd-Jones, D.; Lima, J.; Ambale-Venkatesh, B.; Shah, S.J.; Shah, R.; Lewis, C.E.; Jacobs, D.R., Jr.; Allen, N.B. Prevalence of American heart association heart failure stages in black and white young and middle-aged adults: The CARDIA Study. Circ. Heart Fail. 2019, 12, e005730. [Google Scholar] [CrossRef]
- Moreno-Sánchez, P.A.; García-Isla, G.; Corino, V.D.; Vehkaoja, A.; Brukamp, K.; Van Gils, M.; Mainardi, L. ECG-based data-driven solutions for diagnosis and prognosis of cardiovascular diseases: A systematic review. Comput. Biol. Med. 2024, 172, 108235. [Google Scholar] [CrossRef]
- Shruthi, T.; Srimathi, P.; Janani, S. Cardiac Disease Diagnosis from Echocardiogram using Random Forest Classifier. In Proceedings of the 2024 5th International Conference on Data Intelligence and Cognitive Informatics (ICDICI), Tirunelveli, India, 18 November 2024; pp. 362–368. [Google Scholar]
- Curici, A.; Popescu, M.R.; Pîrvuleț, V.A.; Marinescu, G.I.; Ionescu, A.C. A Cross-Sectional Study on the Role of a Lab Test Screening Program in Defining Cardiovascular Disease Risk Prevalence. J. Pers. Med. 2024, 14, 284. [Google Scholar] [CrossRef]
- Matusik, P.S.; Mikrut, K.; Bryll, A.; Popiela, T.J.; Matusik, P.T. Cardiac magnetic resonance imaging in diagnostics and cardiovascular risk assessment. Diagnostics 2025, 15, 178. [Google Scholar] [CrossRef]
- Pontone, G.; Rossi, A.; Guglielmo, M.; Dweck, M.R.; Gaemperli, O.; Nieman, K.; Pugliese, F.; Maurovich-Horvat, P.; Gimelli, A.; Cosyns, B.; et al. Clinical applications of cardiac computed tomography: A consensus paper of the European Association of Cardiovascular Imaging—Part II. Eur. Heart J.-Cardiovasc. Imaging 2022, 23, e136–e161. [Google Scholar] [CrossRef]
- Pal, M.; Parija, S.; Panda, G.; Dhama, K.; Mohapatra, R.K. Risk prediction of cardiovascular disease using machine learning classifiers. Open Med. 2022, 17, 1100–1113. [Google Scholar] [CrossRef]
- Wang, Z. New Trend: Application of Laser-Induced Breakdown Spectroscopy with Machine Learning. Chemosensors 2025, 13, 5. [Google Scholar] [CrossRef]
- Sabri, A.S.; Rasid, H.M.; Abd Rashid, R.; Karim, U.K.; Subri, M.S.; Halim, M.I. A Review of Laser-Induced Breakdown Spectroscopy (LIBS) for Document Examination: Fundamentals, Mechanism, and Application. Curr. Appl. Sci. Technol. 2024, 24, e0257203. [Google Scholar] [CrossRef]
- Chaichi, A.; Prasad, A.; Gartia, M.R. Raman spectroscopy and microscopy applications in cardiovascular diseases: From molecules to organs. Biosensors 2018, 8, 107. [Google Scholar] [CrossRef] [PubMed]
- Mamarelis, I.; Anastassopoulou, J.; Mylonas, E.; Mamareli, V.; Spiliopoulos, K.; Theophanides, T. FT-IR spectroscopic study of atheromatic plaque formation and the risk of COVID-19 mortality of patients with cardiovascular diseases. A mathematical simulation approach. Atherosclerosis 2022, 355, 49. [Google Scholar] [CrossRef]
- Yabsley, W.; Homer-Vanniasinkam, S.; Fisher, J. Nuclear Magnetic Resonance Spectroscopy in the Detection and Characterisation of Cardiovascular Disease: Key Studies. Int. Sch. Res. Not. 2012, 2012, 784073. [Google Scholar] [CrossRef]
- Kuku, K.O.; Singh, M.; Ozaki, Y.; Dan, K.; Chezar-Azerrad, C.; Waksman, R.; Garcia-Garcia, H.M. Near-infrared spectroscopy intravascular ultrasound imaging: State of the art. Front. Cardiovasc. Med. 2020, 7, 107. [Google Scholar] [CrossRef]
- Khan, M.N.; Wang, Q.; Idrees, B.S.; Xiangli, W.; Teng, G.; Cui, X.; Zhao, Z.; Wei, K.; Abrar, M. A review on laser-induced breakdown spectroscopy in different cancers diagnosis and classification. Front. Phys. 2022, 10, 821057. [Google Scholar] [CrossRef]
- Idrees, B.S.; Teng, G.; Israr, A.; Zaib, H.; Jamil, Y.; Bilal, M.; Bashir, S.; Khan, M.N.; Wang, Q. Comparison of whole blood and serum samples of breast cancer based on laser-induced breakdown spectroscopy with machine learning. Biomed. Opt. Express 2023, 14, 2492–2509. [Google Scholar] [CrossRef]
- Kanawade, S.; Doke, P.; Hajare, D.; Udhan, S.; Patil, B.; Patil, S. Machine intelligence based early prediction methods for Cardiovascular Diseases (CVDs). J. Electr. Syst. 2024, 20. [Google Scholar] [CrossRef]
- Gárate-Escamila, A.K.; El Hassani, A.H.; Andrès, E. Classification models for heart disease prediction using feature selection and PCA. Inform. Med. Unlocked 2020, 19, 100330. [Google Scholar] [CrossRef]
- Mahesh, B. Machine Learning Algorithms—A Review. Int. J. Sci. Res. (IJSR) 2019, 9. [Google Scholar] [CrossRef]
- Davari, S.A.; Masjedi, S.; Ferdous, Z.; Mukherjee, D. In-vitro analysis of early calcification in aortic valvular interstitial cells using Laser-Induced Breakdown Spectroscopy (LIBS). J. Biophotonics 2018, 11, e201600288. [Google Scholar] [CrossRef]
- Li, J.; Pan, X.; Guo, L.; Chen, Y. Cancer diagnosis based on laser-induced breakdown spectroscopy with bagging-voting fusion model. Med. Eng. Phys. 2024, 132, 104207. [Google Scholar] [CrossRef] [PubMed]
- Srinidi, S.; Lohitaa, J.; Mercy, A.; John, P.; Mohan, B.M.; Vasa, N.J. Detection of Atherosclerotic Plaque using Laser-Induced Breakdown Spectroscopy. In Proceedings of the 2023 International Conference on Bio Signals, Images, and Instrumentation (ICBSII), Chennai, India, 16–17 March 2023; pp. 1–4. [Google Scholar]
- Wang, Y.J.; Yeh, T.L.; Shih, M.C.; Tu, Y.K.; Chien, K.L. Dietary sodium intake and risk of cardiovascular disease: A systematic review and dose-response meta-analysis. Nutrients 2020, 12, 2934. [Google Scholar] [CrossRef] [PubMed]
- Al-Salihi, M.; Yi, R.; Wang, S.; Wu, Q.; Lin, F.; Qu, J.; Liu, L. Quantitative laser-induced breakdown spectroscopy for discriminating neoplastic tissues from non-neoplastic ones. Opt. Express 2021, 29, 4159–4173. [Google Scholar] [CrossRef]
- Ashour, A.S.; Hawas, A.R.; Guo, Y. Comparative study of multiclass classification methods on light microscopic images for hepatic schistosomiasis fibrosis diagnosis. Health Inf. Sci. Syst. 2018, 6, 7. [Google Scholar] [CrossRef]
- Tharwat, A. Linear vs. quadratic discriminant analysis classifier: A tutorial. Int. J. Appl. Pattern Recognit. 2016, 3, 145–180. [Google Scholar] [CrossRef]
- Ciu, T.; Oetama, R.S. Logistic regression prediction model for cardiovascular disease. Int. J. New Media Technol. 2020, 7, 33–38. [Google Scholar] [CrossRef]
- Dulhare, U.N. Prediction system for heart disease using Naive Bayes and particle swarm optimization. Biomed. Res. 2018, 29, 2646–2649. [Google Scholar] [CrossRef]
- Duraisamy, B.; Sunku, R.; Selvaraj, K.; Pilla, V.V.; Sanikala, M. Heart disease prediction using support vector machine. Multidiscip. Sci. J. 2024, 6. [Google Scholar] [CrossRef]
- Assegie, T.A. Heart disease prediction model with k-nearest neighbor algorithm. Int. J. Inform. Commun. Technol. (IJ-ICT) 2021, 10, 225. [Google Scholar] [CrossRef]
- Chu, Y.; Chen, F.; Sheng, Z.; Zhang, D.; Zhang, S.; Wang, W.; Jin, H.; Qi, J.; Guo, L. Blood cancer diagnosis using ensemble learning based on a random subspace method in laser-induced breakdown spectroscopy. Biomed. Opt. Express 2020, 11, 4191–4202. [Google Scholar] [CrossRef]
- Shorewala, V. Early detection of coronary heart disease using ensemble techniques. Inform. Med. Unlocked 2021, 26, 100655. [Google Scholar] [CrossRef]
- Qamar, R.; Zardari, B.A. Artificial neural networks: An overview. Mesopotamian J. Comput. Sci. 2023, 2023, 124–133. [Google Scholar] [CrossRef]
- Sathyanarayanan, S.; Tantri, B.R. Confusion matrix-based performance evaluation metrics. Afr. J. Biomed. Res. 2024, 27, 4023–4031. [Google Scholar] [CrossRef]
- Feng, K.; Hong, H.; Tang, K.; Wang, J. Decision making with machine learning and ROC curves. arXiv 2019, arXiv:1905.02810. [Google Scholar] [CrossRef]
Sample Type | Number of Samples | Total Number of Raw Spectra | Total Number of Averaged Spectra |
---|---|---|---|
CVD | 30 | 1500 | 150 |
Healthy | 30 | 1500 | 150 |
Elements | Wavelength (nm) |
---|---|
C | 247.8 |
CN | 385.9, 386.1, 387.2, 388.2 |
Ca | 393.4, 396.8, 422.7 |
N | 500.5 |
Na | 588.9, 589.5 |
Data Separation | Healthy | CVD | |
---|---|---|---|
Validation set | No of samples No of spectra | 20 100 | 20 100 |
Testing set | No of samples No of spectra | 10 50 | 10 50 |
Algorithm | Algorithm Type | Validation Accuracy (%) | Testing Accuracy (%) | Validation Time (s) |
---|---|---|---|---|
Decision trees | Fine Tree | 99.0 | 100.0 | 26.427 |
Medium Tree | 99.0 | 100.0 | 23.603 | |
Coarse Tree | 99.0 | 100.0 | 21.991 | |
Discrimination analysis | Linear Discrimination | 73.0 | 66.0 | 21.453 |
Quadratic Discrimination | 100.0 | 100.0 | 20.168 | |
Binary GLM logistic regression | Regression | 83.0 | 69.0 | 18.972 |
Efficient logistic regression | Efficient Logistic Regression | 64.5 | 58.0 | 17.291 |
Efficient linear SVM | Efficient Linear SVM | 63.0 | 58.0 | 15.862 |
Naïve byes | Gaussian Naïve Bayes | 100.0 | 100.0 | 14.622 |
Kernel Naïve Bayes | 98.0 | 100.0 | 13.413 | |
SVM | Linear SVM | 78.0 | 66.0 | 20.572 |
Quadratic SVM | 97.5 | 97.0 | 21.745 | |
Cubic SVM | 91.0 | 98.0 | 8.2034 | |
Fine Gaussian | 93.0 | 92.0 | 2.9623 | |
Medium Gaussian | 68.5 | 69.0 | 2.5884 | |
Coarse Gaussian | 52.0 | 63.0 | 4.6541 | |
k-NN | Fine k-NN | 98.5 | 99.0 | 3.3484 |
Medium k-NN | 97.5 | 96.0 | 3.7223 | |
Coarse k-NN | 50.0 | 50.0 | 3.2015 | |
Cosine k-NN | 98.0 | 99.0 | 2.2403 | |
Cubic k-NN | 97.5 | 97.0 | 3.4522 | |
Weighted k-NN | 98.0 | 96.0 | 2.5152 | |
Ensemble classifier | Boosted Trees | 50.0 | 50.0 | 6.5405 |
Bagged Trees | 99.0 | 100.0 | 13.693 | |
Subspace Discriminant | 72.5 | 66.0 | 17.012 | |
Subspace k-NN | 99.5 | 100.0 | 19.389 | |
RUS Boosted Trees | 50.0 | 50.0 | 4.3633 | |
Neural network | Narrow Neural Network | 100.0 | 100.0 | 10.008 |
Medium Neural Network | 99.5 | 99.0 | 9.7316 | |
Wide Neural Network | 99.5 | 100.0 | 7.7047 | |
Bilayer Neural Network | 99.5 | 100.0 | 11.297 | |
Trilayer Neural Network | 100.0 | 100.0 | 10.602 | |
Kernel | SVM Kernel | 95.5 | 95.0 | 11.324 |
Logistic Regression Kernel | 94.0 | 93.0 | 10.622 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hameed, A.; Idrees, B.S.; Nawaz, R.; Azam, F.; Sabir, S.; Gulzar, A.; Jamil, Y.; Teng, G. Early Detection of Cardiovascular Disease Using Laser-Induced Breakdown Spectroscopy Combined with Machine Learning. Photonics 2025, 12, 849. https://doi.org/10.3390/photonics12090849
Hameed A, Idrees BS, Nawaz R, Azam F, Sabir S, Gulzar A, Jamil Y, Teng G. Early Detection of Cardiovascular Disease Using Laser-Induced Breakdown Spectroscopy Combined with Machine Learning. Photonics. 2025; 12(9):849. https://doi.org/10.3390/photonics12090849
Chicago/Turabian StyleHameed, Amna, Bushra Sana Idrees, Rabia Nawaz, Fiza Azam, Shahwal Sabir, Amna Gulzar, Yasir Jamil, and Geer Teng. 2025. "Early Detection of Cardiovascular Disease Using Laser-Induced Breakdown Spectroscopy Combined with Machine Learning" Photonics 12, no. 9: 849. https://doi.org/10.3390/photonics12090849
APA StyleHameed, A., Idrees, B. S., Nawaz, R., Azam, F., Sabir, S., Gulzar, A., Jamil, Y., & Teng, G. (2025). Early Detection of Cardiovascular Disease Using Laser-Induced Breakdown Spectroscopy Combined with Machine Learning. Photonics, 12(9), 849. https://doi.org/10.3390/photonics12090849