Research Progress of Surface-Enhanced Raman Scattering (SERS) Technology in Food, Biomedical, and Environmental Monitoring
Abstract
1. Introduction
2. Surface-Enhanced Raman Scattering: An Introduction
2.1. Raman Scattering
2.2. Development of Surface-Enhanced Raman Scattering
3. Surface-Enhanced Raman Scattering Enhancement Mechanisms
3.1. Electromagnetic Enhancement Mechanism
3.2. Chemical Enhancement Mechanism
4. Surface-Enhanced Raman Scattering Substrates
4.1. Noble Metal SERS Substrates
4.2. Non-Noble Metal SERS Substrates
- 1.
- Morphological Engineering
- 2.
- Dimensional Control
- 3.
- Crystallinity and Phase Manipulation
- 4.
- Defect Engineering
4.3. Noble Metal/Functional Material Composite SERS Substrates
5. Applications of Surface-Enhanced Raman Scattering
5.1. Applications of SERS in Food Safety
5.1.1. Pesticide Residue Detection
- 1.
- Innovative design of high sensitivity SERS substrate
- 2.
- Breakthrough in simultaneous multi-residue detection technology
- 3.
- Intelligent Algorithm-Driven Quantitative Analysis
- 4.
- Innovations in on-site rapid testing programmes
- 5.
- Innovations in complex matrix pre-treatment
Detection Target | Substrate Scheme | LOD | Detection Range | Key Features | Ref. |
---|---|---|---|---|---|
Chlorpyrifos | Au@Ag NPs | 0.29 μg/mL | N/A | GA-PLS/siPLS-GA models; GC-MS equivalent accuracy | [72] |
Silver nanoflowers (AgNFs) | 0.01 μg/mL | 0.01–1000 μg/mL | Simultaneous detection with carbendazim; ICPA-PLS algorithm | [74] | |
Acetamiprid | Au@Ag NPs | 10−4 μg/mL | N/A | First dual-pesticide detection; SPE pretreatment | [73] |
SERS sensor + RF algorithm | 10 ng/g | 5–100 ng/g | Palm oil matrix; RF-PLS model | [86] | |
Carbendazim | Flexible aptasensor | 1.20 ng/cm2 | N/A | PVDF/CQDs flexible substrate; non-destructive apple surface detection | [98] |
Fe3O4/CS@Ag magnetic microspheres | 1.2 ng/cm2 | N/A | SMSPE-SERS integration; magnetic separation enrichment | [83] | |
Thiabendazole | Flower-like AgNPs | 0.24 μg/mL | 0.5–50 mg/L | CARS-ELM nonlinear model | [76] |
HSM@AuNPs floating substrate | 102 ppb | N/A | Liquid-liquid microextraction integration; tea beverage matrix | [99] | |
Thiram | Au@Ag NPs | 0.076 μM | 0.5–10 μM | Portable Raman; dual-pesticide simultaneous detection | [75] |
Fe3O4/CS@Ag magnetic microspheres | 1.2 ng/cm2 | N/A | Direct detection in apple juice; magnetic separation | [83] | |
Methomyl | Flower-like AgNPs | 5.58 × 10−4 μg/mL | N/A | SPE pretreatment; tea matrix | [100] |
Cadmium | Sodium alginate-reduced AgNPs | 2.36 × 10−5 μg/L | N/A | Green synthesis; edge enrichment technology | [85] |
Sudan dyes | Au@Ag bimetallic nanoflowers | 0.00088 ppm (Type I) | 0.001–4.0 ppm | Four-dye synchronous screening; genetic algorithm optimization | [82] |
5.1.2. Advances in Mycotoxin Detection via SERS
5.1.3. Heavy Metal Detection
5.1.4. Detection of Other Constituents
- 1.
- Antibiotic Residue Detection
- 2.
- Detection of Illicit Additives and Prohibited Drugs
- 3.
- Natural Active Compounds and Toxin Detection
- 4.
- Polycyclic Aromatic Hydrocarbon (PAH) Detection
- 5.
- Other Additives and Contaminants
- Plasticizers (phthalate esters)
- Joint detection of preservatives and heavy metals
- Sulfur-containing gases
- 4-Aminothiophenol (4-ATP)
5.2. Applications of SERS in the Biomedical Field
- 1.
- Rapid Detection of Pathogenic Microorganisms
- 2.
- Tumor Biomarker and Exosome Analysis
- 3.
- Virus and Genetic Disease Diagnostics
- multiplexed detection necessitates the creation of high-throughput microarray platforms [183,191]. Future trends include the development of flexible and wearable SERS devices [176], the integration of artificial intelligence for intelligent spectral analysis [174,179], and the exploration of plasmon–catalytic synergistic effects for therapeutic monitoring [192,193]. Zhu et al. (2023) pointed out that integrating SERS with microfluidic and electrochemical platforms will accelerate the deployment of point-of-care testing (POCT) devices [188], while Yuan et al. (2022) emphasized that machine-learning algorithms’ ability to deconvolute complex biological spectra will be a critical breakthrough enabler [194].
5.3. Applications of SERS in Environmental Monitoring
5.3.1. Design and Optimization of High-Performance SERS Substrates
- 1.
- Noble-metal nanostructures
- 2.
- Composite Functional Materials
- 3.
- Flexible and Wearable Substrates
5.3.2. Strategies for Enhancing Detection Sensitivity and Selectivity
- 1.
- Integration of microfluidics and enrichment techniques
- 2.
- Portable Devices and On-Site Detection
- 3.
- Machine-Learning–Assisted Analysis
6. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Rick, S.; Matthias, P.; Dwight, R.; Bob, W. Recent trends in two-dimensional liquid chromatography. Anal. Chem. 2023, 166, 117166. [Google Scholar]
- Elliott, L.; Saumen, P.; Sazia, I.; Kyungah, S.; Ashley, G.; Susan, O.; Allegra, P.; Morgan, W.; Shae, L.; David, S. Affinity chromatography: A review of trends and developments over the past 50 years. J. Chromatogr. B 2020, 1157, 122332. [Google Scholar] [CrossRef]
- Fábio, H.; Gonzalo, G.; Thyerre, S.; Ljubica, T. Applications of fluorescence spectroscopy in protein conformational changes and intermolecular contacts. J. Fluoresc. 2023, 3, 100091. [Google Scholar]
- Despoina-Eleni, Z.; Ioannis, F.; Melina, K. Review of Fluorescence Spectroscopy in Environmental Quality Applications. Multidiscip. Digit. Publ. Inst. 2022, 27, 4801. [Google Scholar]
- Alessandro, P. Mixed and non-competitive enzyme inhibition: Underlying mechanisms andmechanistic irrelevance of the formal two-site model. J. Enzym. Inhib. Med. Chem. 2023, 38, 2245168. [Google Scholar]
- Rakhi, C.; Swarnendu, R. Angiotensin-converting enzyme inhibitors from plants: A review of their diversity, modes of action, prospects, and concerns in the management of diabetes-centric complications. J. Integr. Med. 2021, 19, 478–492. [Google Scholar]
- Yong, C.; Hai, M. Review of surface plasmon resonance and localized surface plasmon resonance sensor. Photonic Sens. 2012, 2, 37–49. [Google Scholar]
- Zhao, J.; Xue, S.; Ji, R.; Lia, B.; Li, J. Localized surface plasmon resonance for enhanced electrocatalysis. Chem. Soc. Rev. 2021, 50, 12070–12097. [Google Scholar] [CrossRef] [PubMed]
- Raman, C.; Krishnan, K. A New Type of Secondary Radiation. Nature 1928, 121, 501–502. [Google Scholar] [CrossRef]
- Lin, L.; Bi, X.; Gu, Y.; Wang, F.; Ye, J. Surface-enhanced Raman scattering nanotags for bioimaging. J. Appl. Phys. 2021, 129, 191101. [Google Scholar] [CrossRef]
- Fleischmann, M.; Hendra, P.; Mcquillan, A. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166. [Google Scholar] [CrossRef]
- Jeanmaire, D.; Van Duyne, R.P. Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 1977, 84, 1–20. [Google Scholar] [CrossRef]
- Moskovits, M. Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. J. Chem. Phys. 1978, 69, 4159–4161. [Google Scholar] [CrossRef]
- Creighton, J.; Blatchford, C.; Albrecht, M. Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys. 1979, 75, 790–798. [Google Scholar] [CrossRef]
- Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L.T.; Itzkan, I.; Dasari, R.R.; Feld, M.S. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS). Phys. Rev. Lett. 1997, 78, 1667–1670. [Google Scholar] [CrossRef]
- Chen, H.; Lin, M.; Wang, C.; Chang, Y.-M.; Gwo, S. Large-Scale Hot Spot Engineering for Quantitative SERS at the Single-Molecule Scale. J. Am. Chem. Soc. 2015, 137, 13698–13705. [Google Scholar] [CrossRef]
- Liao, P.; Wokaun, A. Lightning rod effect in surface enhanced Raman scattering. J. Chem. Phys. 1982, 76, 751–752. [Google Scholar] [CrossRef]
- Hao, F.; Sonnefraud, Y.; Van, D.; Maier, S.A.; Halas, N.J.; Nordlander, P. Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance. Nano Lett. 2008, 8, 3983–3988. [Google Scholar] [CrossRef]
- Lee, H.; Lee, Y.; Koh, C.; Phan-Quang, G.C.; Han, X.; Lay, C.L.; Sim, H.Y.F.; Kao, Y.-C.; An, Q.; Ling, X.Y. Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: Emerging opportunities in analyte manipulations and hybrid materials. Chem. Soc. Rev. 2019, 48, 731–756. [Google Scholar] [CrossRef]
- Wang, X. Fabrication and Application of Highly-Sensitive Surface-Enhanced Raman Scattering Sensors. Ph.D. Thesis, Hunan University, Changsha, China, 2020. (In Chinese). [Google Scholar]
- Ding, S.; Wu, D.; Yang, Z.; Ren, B.; Xu, X.; Tian, Z.Q. Some Progresses in Mechanistic Studies on Surface-Enhanced Raman Scattering. Chem. J. Chin. Univ. Chin. 2008, 29, 2569–2581. [Google Scholar]
- Wang, X.; Shi, W.; Wang, S.; Zhao, H.; Lin, J.; Yang, Z.; Chen, M.; Guo, L. Two-Dimensional Amorphous TiO2 Nanosheets Enabling High-Efficiency Photoinduced Charge Transfer for Excellent SERS Activity. J. Am. Chem. Soc. 2019, 141, 5856–5862. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, X.; Liu, B.; Wang, Z.C.; Hu, C.L.; Chen, J. Classification and Application of Surface-enhanced Raman Spectroscopy Substrates. Chin. J. Anal. Chem. 2024, 52, 910–924. (In Chinese) [Google Scholar]
- Li, M.; Qiu, Y.; Fan, C.; Cui, K.; Zhang, Y.; Xiao, Z. Design of SERS nanoprobes for Raman imaging: Materials, critical factors and architectures. Acta Pharm. Sin. B 2018, 8, 381–389. [Google Scholar] [CrossRef]
- Bastús, N.; Merkoçi, F.; Piella, J.; Puntes, V. Synthesis of Highly Monodisperse Citrate-Stabilized Silver Nanoparticles of up to 200 nm: Kinetic Control and Catalytic Properties. Chem. Mater. 2014, 26, 2836–2846. [Google Scholar] [CrossRef]
- Fernández-López, C.; Polavarapu, L.; Solís, D.; Taboada, J.M.; Obelleiro, F.; Contreras-Cáceres, R.; Pastoriza-Santos, I.; Pérez-Juste, J. Gold Nanorod–pNIPAM Hybrids with Reversible Plasmon Coupling: Synthesis, Modeling, and SERS Properties. ACS Appl. Mater. Interfaces 2015, 7, 12530–12538. [Google Scholar] [CrossRef]
- Lee, H.; Koh, C.; Lee, Y.; Liu, C.; Phang, I.Y.; Han, X.; Tsung, C.K.; Ling, X.Y. Favoring the unfavored: Selective electrochemical nitrogen fixation using a reticular chemistry approach. Sci. Adv. 2018, 4, eaar3208. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Q.; Li, Z.; Zheng, M.; Liu, Q.; Chen, Y.; Yang, L.; Jiang, T.; Duan, H. Sensitive SERS detection at the single-particle level based on nanometer-separated mushroom-shaped plasmonic dimers. Nanotechnology 2018, 29, 105301. [Google Scholar] [CrossRef]
- Jeon, T.; Park, S.; Kim, D.; Kim, S.H. Standing-Wave-Assisted Creation of Nanopillar Arrays with Vertically Integrated Nanogaps for SERS-Active Substrates. Adv. Funct. Mater. 2015, 25, 4681–4688. [Google Scholar] [CrossRef]
- Lee, Y.; Shi, W.; Lee, H.; Jiang, R.; Phang, I.Y.; Cui, Y.; Isa, L.; Yang, Y.; Wang, J.; Li, S.; et al. Nanoscale surface chemistry directs the tunable assembly of silver octahedra into three two-dimensional plasmonic superlattices. Nat. Commun. 2015, 6, 6990. [Google Scholar] [CrossRef]
- Proniewicz, E.; Tąta, A.; Wójcik, A.; Starowicz, M.; Pacek, J.; Molenda, M. SERS activity and spectroscopic properties of Zn and ZnO nanostructures obtained by electrochemical and green chemistry methods for applications in biology and medicine. Phys. Chem. Chem. Phys. 2020, 22, 28100–28114. [Google Scholar] [CrossRef] [PubMed]
- Thu, T.; Xuan, H.; Thi, L.; Thi, T.; Dac, D.; Van, D. Enhanced Raman scattering based on a ZnO/Ag nanostructured substrate: An in-depth study of the SERS mechanism. Phys. Chem. Chem. Phys. 2023, 25, 15941–15952. [Google Scholar]
- Yang, L.; Peng, Y.; Yang, Y.; Liu, J.; Li, Z.; Ma, Y.; Zhang, Z.; Wei, Y.; Li, S.; Huang, Z.; et al. Green and Sensitive Flexible Semiconductor SERS Substrates: Hydrogenated Black TiO2 Nanowires. ACS Appl. Nano Mater. 2018, 1, 4516–4527. [Google Scholar] [CrossRef]
- Zalduendo, M.M.; Oestreicher, V.; Langer, J.; Liz-Marzán, L.M.; Angelomé, P.C. Monitoring Chemical Reactions with SERS-Active Ag-Loaded Mesoporous TiO2 Films. Anal. Chem. 2020, 92, 13656–13660. [Google Scholar] [CrossRef]
- Li, J.; Bai, H.; Zhai, J.; Li, W.; Fan, W.; Xi, G. Metallic and plasmonic MoO2 monocrystalline ultrathin mesoporous nanosheets for highly sensitive and stable surface-enhanced Raman spectroscopy. Chem. Commun. 2019, 55, 4679–4682. [Google Scholar] [CrossRef]
- Meng, X.; Yu, J.; Shi, W.; Qiu, L.; Qiu, K.; Li, A.; Liu, Z.; Wang, Y.; Wu, J.; Lin, J.; et al. SERS Detection of Trace Carcinogenic Aromatic Amines Based on Amorphous MoO3 Monolayers. Angew. Chem. 2024, 136, e202407597. [Google Scholar] [CrossRef]
- Yang, L.; Wei, Y.; Song, Y.; Peng, Y.; Yang, Y.; Huang, Z. Surface-enhanced Raman scattering from amorphous nanoflower-structural Nb2O5 fabricated by two-step hydrothermal technology. Mater. Des. 2020, 193, 108808. [Google Scholar] [CrossRef]
- Sirsendu, G.; Sanju, N.; Giri, P.K. Defect-Engineered Nb2O5 Nanoparticles for SERS Sensing through Suppressed Phonon-Assisted Recombination at Cryogenic Temperature. ACS Appl. Nano Mater. 2024, 7, 20484–20497. [Google Scholar]
- Pan, X.; Li, L.; Lin, H.; Tan, J.; Wang, H.; Liao, M.; Chen, C.; Shan, B.; Chen, Y.; Li, M. A graphene oxide-gold nanostar hybrid based-paper biosensor for label-free SERS detection of serum bilirubin for diagnosis of jaundice. Biosens. Bioelectron. 2019, 145, 111713. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Cheng, Y.; Sun, M. Graphene-based SERS for sensor and catalysis. Appl. Spectrosc. Rev. 2023, 58, 1–38. [Google Scholar] [CrossRef]
- Cui, H.; Li, S.; Deng, S.; Chen, H.; Wang, C. Flexible, Transparent, and Free-Standing Silicon Nanowire SERS Platform for in Situ Food Inspection. ACS Sens. 2017, 2, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Ko, T.; Liu, H.; Shieh, J.; Shieh, D.; Chen, S.; Chen, Y.; Lin, E. Using Si/MoS2 Core-Shell Nanopillar Arrays Enhances SERS Signal. Nanomaterials 2021, 11, 733. [Google Scholar] [CrossRef]
- Wang, X.; Shi, W.; She, G.; Mu, L. Using Si and Ge Nanostructures as Substrates for Surface-Enhanced Raman Scattering Based on Photoinduced Charge Transfer Mechanism. J. Am. Chem. Soc. 2011, 133, 16518–16523. [Google Scholar] [CrossRef]
- Li, J.; Zhang, S.; Zhai, Y.; Ma, J.; Fang, W.; Zhang, Y. Development and application of MoS2 and its metal composite surface enhanced Raman scattering substrates. Acta Phys. Sin. 2019, 68, 133–144. (In Chinese) [Google Scholar] [CrossRef]
- Su, R.; Yang, S.; Han, D.; Hu, M.; Liu, Y.; Yang, J.; Gao, M. Ni and O co-modified MoS2 as universal SERS substrate for the detection of different kinds of substances. J. Colloid Interface Sci. 2023, 635, 1–11. [Google Scholar] [CrossRef]
- Song, X.; Wang, Y.; Zhao, F.; Li, Q.; Ta, H.Q.; Rümmeli, M.H.; Tully, C.G.; Li, Z.; Yin, W.J.; Yang, L.; et al. Plasmon-Free Surface-Enhanced Raman Spectroscopy Using Metallic 2D Materials. ACS Nano 2019, 13, 8312–8319. [Google Scholar] [CrossRef]
- Liang, C.; Sun, K.; Chen, M.; Xu, P. Crystal-Phase Engineering of Two-Dimensional Transition-Metal Dichalcogenides for Surface-Enhanced Raman Scattering: A Perspective. Langmuir 2023, 39, 11946–11953. [Google Scholar] [CrossRef]
- Demirel, G.; Usta, H.; Yilmaz, M.; Celik, M.; Alidagi, H.A.; Buyukserin, F. Surface-enhanced Raman spectroscopy (SERS): An adventure from plasmonic metals to organic semiconductors as SERS platforms. J. Mater. Chem. C 2018, 6, 5314–5335. [Google Scholar] [CrossRef]
- Swarna, G.; Krishnan, V.; Bo, T. Quantum scale organic semiconductors for SERS detection of DNA methylation and gene expression. Nat. Commun. 2020, 11, 1135. [Google Scholar] [CrossRef] [PubMed]
- Ji, W.; Li, L.; Guan, J.; Mu, M.; Song, W.; Sun, L.; Zhao, B.; Ozaki, Y. Hollow Multi-Shelled V2O5 Microstructures Integrating Multiple Synergistic Resonances for Enhanced Semiconductor SERS. Adv. Opt. Mater. 2021, 9, 2101866. [Google Scholar] [CrossRef]
- Wang, L.; Patskovsky, S.; Gauthier-Soumis, B.; Meunier, M. Porous Au–Ag Nanoparticles from Galvanic Replacement Applied as Single-Particle SERS Probe for Quantitative Monitoring. Small 2022, 18, 2105209. [Google Scholar] [CrossRef]
- Islam, S.; Sohel, M.; Lombard, J. Coupled Exciton and Charge-Transfer Resonances in the Raman Enhancement of Phonon Modes of CdSe Quantum Dots (QDs). J. Phys. Chem. C 2014, 118, 19415–19421. [Google Scholar] [CrossRef]
- Dmitriev, P.; Baranov, D.; Milichko, V.; Makarov, S.V.; Mukhin, I.S.; Samusev, A.K.; Krasnok, A.E.; Belov, P.A.; Kivshar, Y.S. Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response. Nanoscale 2016, 8, 9721–9726. [Google Scholar] [CrossRef]
- Lin, J.; Ren, W.; Li, A.; Yao, C.; Chen, T.; Ma, X.; Wang, X.; Wu, A. Crystal–Amorphous Core–Shell Structure Synergistically Enabling TiO2 Nanoparticles’ Remarkable SERS Sensitivity for Cancer Cell Imaging. ACS Appl. Mater. Interfaces 2020, 12, 4204–4211. [Google Scholar] [CrossRef]
- Gu, C.; Li, D.; Zeng, S.; Jiang, T.; Shen, X.; Zhang, H. Synthesis and defect engineering of molybdenum oxides and their SERS applications. Nanoscale 2021, 13, 5620–5651. [Google Scholar] [CrossRef]
- Lin, J.; Shang, Y.; Li, X.; Yu, J.; Wang, X.; Guo, L. Ultrasensitive SERS Detection by Defect Engineering on Single Cu2O Superstructure Particle. Adv. Mater. 2016, 29, 1604797. [Google Scholar] [CrossRef]
- Sharma, B.; Cardinal, M.F.; Ross, M.B.; Zrimsek, A.B.; Bykov, S.V.; Punihaole, D.; Asher, S.A.; Schatz, G.C.; Van Duyne, R.P. Aluminum Film-Over-Nanosphere Substrates for Deep-UV Surface-Enhanced Resonance Raman Spectroscopy. Nano Lett. 2016, 16, 7968–7973. [Google Scholar] [CrossRef]
- Paolo, P.; Giorgia, G.; Sandro, C.; Remo, P.; Sergio, M.; Mirko, P.; Andrea, S.; Francesco, D.; Eugenio, C.; Francesco, D.; et al. Metallic Nanoporous Aluminum—Magnesium Alloy for UV-Enhanced Spectroscopy. J. Phys. Chem. C 2019, 123, 20287–20296. [Google Scholar]
- Shankar, K.; Zeeshan, A.; Mario, A.; Yasin, E.; Jörg, F. Deep-UV Surface-Enhanced Resonance Raman Scattering of Adenine on Aluminum Nanoparticle Arrays. J. Am. Chem. Soc. 2012, 134, 1966–1969. [Google Scholar]
- Tao, D.; Daniel, O.; Lars, O.; Daniel, W.; Jeremy, J. Nanoimprint Lithography of Al Nanovoids for Deep-UV SERS. ACS Appl. Mater. Interfaces 2014, 6, 17358–17363. [Google Scholar] [CrossRef]
- Shrobona, B.; Luca, M.; Nicolò, M.; Sandro, C.; Weng, S.; Ali, D.; German, L.; Anastasiia, S.; Francesco, D.; Ma, Q.; et al. Porous aluminum decorated with rhodium nanoparticles: Preparation and use as a platform for UV SERS. Mater. Adv. 2024, 5, 6248–6254. [Google Scholar] [CrossRef]
- Li, L.; Fang Lim, S.; Puretzky, A.A.; Riehn, R.; Hallen, H.D. Near-field enhanced ultraviolet resonance Raman spectroscopy using aluminum bow-tie nano-antenna. Appl. Phys. Lett. 2012, 101, 113116. [Google Scholar] [CrossRef]
- Fan, W.; Lee, Y.H.; Pedireddy, S.; Zhang, Q.; Liu, T.; Ling, X.Y. Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing. Nanoscale 2014, 6, 4843–4851. [Google Scholar] [CrossRef]
- Jiang, X.; Sun, X.; Yin, D.; Li, X.; Yang, M.; Han, X.; Yang, L.; Zhao, B. Recyclable Au-TiO2 nanocomposite SERS-active substrates contributed by synergistic chargetransfer effect. Phys. Chem. Chem. Phys. 2017, 19, 11212–11219. [Google Scholar] [CrossRef]
- Rösler, C.; Fischer, R. Metal-organic frameworks as hosts for nanoparticles. Crystengcomm 2015, 17, 199–217. [Google Scholar] [CrossRef]
- Li, H.; Dai, H.; Zhang, Y.; Tong, W.; Gao, H.; An, Q. Surface-Enhanced Raman Spectra Promoted by a Finger Press in an All-Solid-State Flexible Energy Conversion and Storage Film. Angew. Chem. Int. Ed. Engl. 2017, 56, 2649–2654. [Google Scholar] [CrossRef]
- Xue, X.; Chen, L.; Wang, L.; Wang, C.; Qiao, Y.; Zhao, C.; Wang, H.; Nie, P.; Shi, J.; Chang, L. Facile fabrication of PS/Cu2S/Ag sandwich structure as SERS substrate for ultra-sensitive detection. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 265, 120370. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Chen, P.; Lin, X.; Khan, I.M.; Ma, X.; Wang, Z. Controllable synthesis of flower-like AuNFs@ZIF-67 core-shell nanocomposites for ultrasensitive SERS detection of histamine in fish. Anal. Chim. Acta 2023, 1240, 340776. [Google Scholar] [CrossRef]
- Xu, N.; Tang, Z.; Jiang, Y.; Fang, J.; Zhang, L.; Lai, X.; Sun, Q.J.; Fan, J.M.; Tang, X.G.; Liu, Q.X.; et al. Highly sensitive detection of thiram residues on fruit peel surfaces using a filter paper-based SERS sensor with AgNWs@ZIF-8. J. Environ. Chem. Eng. 2023, 11, 109736. [Google Scholar] [CrossRef]
- Zhu, C.; Ren, C.; Jiang, W.; Liu, D.; Huang, Y.; Wang, W.; Chang, K.; Zhu, L.; Wang, Q. A versatile SERS platform based on conductive MOF-enforced carbon paper for rapidly and sensitively monitoring diazepam in aquatic products. Food Chem. 2024, 435, 137608. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.; Li, L.; Zhang, R.; Fang, J. Rapid and ultrasensitive solution-based SERS detection of drug additives in aquaculture by using polystyrene sulfonate modified gold nanobipyramids. Talanta 2023, 251, 123800. [Google Scholar] [CrossRef]
- Zhu, J.; Agyekum, A.; Kutsanedzie, F.; Li, H.; Chen, Q.; Ouyang, Q.; Jiang, H. Qualitative and quantitative analysis of chlorpyrifos residues in tea by surface-enhanced Raman spectroscopy (SERS) combined with chemometric models. LWT—Food Sci. Technol. 2018, 97, 760–769. [Google Scholar] [CrossRef]
- Hassan, M.; Li, H.; Ahmad, W.; Zareef, M.; Wang, J.; Xie, S.; Wang, P.; Ouyang, Q.; Wang, S.; Chen, Q. Au@Ag Nanostructure Based SERS Substrate for Simultaneous Determination of Pesticides Residue in Tea via Solid Phase Extraction Coupled Multivariate Calibration. LWT—Food Sci. Technol. 2019, 105, 290–297. [Google Scholar] [CrossRef]
- Hassan, M.; Zareef, M.; Jiao, T.; Liu, S.; Xu, Y.; Viswadevarayalu, A.; Li, H.; Chen, Q. Signal optimized rough silver nanoparticle for rapid SERS sensing of pesticide residues in tea. Food Chem. 2020, 338, 127796. [Google Scholar] [CrossRef]
- Li, H.; Hassan, M.; He, Z.; Haruna, S.A.; Chen, Q.; Ding, Z. A Sensitive Silver Nanoflower-Based SERS Sensor Coupled Novel Chemometric Models for Simultaneous Detection of Chlorpyrifos and Carbendazim in Food. LWT—Food Sci. Technol. 2022, 167, 113804. [Google Scholar] [CrossRef]
- Ma, L.; Han, E.; Yin, L.; Xu, Q.; Zou, C.; Bai, J.; Wu, W.; Cai, J. Simultaneous detection of mixed pesticide residues based on portable Raman spectrometer and Au@Ag nanoparticles SERS substrate. Food Control 2023, 153, 109951. [Google Scholar] [CrossRef]
- Li, H.; Luo, X.; Haruna, S.A.; Zareef, M.; Chen, Q.; Ding, Z.; Yan, Y. Au-Ag OHCs-Based SERS Sensor Coupled with Deep Learning CNN Algorithm to Quantify Thiram and Pymetrozine in Tea. Food Chem. 2023, 428, 136742. [Google Scholar] [CrossRef]
- Zhu, A.; Xu, Y.; Ali, S.; Ouyang, Q.; Chen, Q. Au@Ag Nanoflowers Based SERS Coupled Chemometric Algorithms for Determination of Organochlorine Pesticides in Milk. LWT—Food Sci. Technol. 2021, 150, 111000. [Google Scholar] [CrossRef]
- Adade, S.Y.-S.S.; Lin, H.; Haruna, S.A.; Johnson, N.A.N.; Barimah, A.O.; Zhu, A.; Chen, Z.; Ekumah, J.-N.; Wang, F.; Li, H.; et al. Multicomponent Prediction of Sudan Dye Adulteration in Crude Palm Oil Using SERS-Based Bimetallic Nanoflower Combined with Genetic Algorithm. J. Food Compos. Anal. 2023, 125, 105870. [Google Scholar] [CrossRef]
- Sun, Y.; Tang, H.; Zou, X.; Meng, G.; Wu, N. Raman Spectroscopy for Food Quality Assurance and Safety Monitoring: A Review. Curr. Opin. Food Sci. 2022, 47, 100885. [Google Scholar] [CrossRef]
- Yang, H.; Qian, H.; Xu, Y.; Zhai, X. A Sensitive SERS Sensor Combined with Intelligent Variable Selection Models for Detecting Chlorpyrifos Residue in Tea. Foods 2024, 13, 2363. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Luo, X.; Haruna, S.A.; Zhou, W.; Chen, Q. Rapid Detection of Thiabendazole in Food Using SERS Coupled with Flower-Like AgNPs and PSL-Based Variable Selection Algorithms. J. Food Compos. Anal. 2022, 115, 105013. [Google Scholar] [CrossRef]
- Hajikhani, M.; Kousheh, S.; Zhang, Y.; Lin, M.S. Design of a Novel SERS Substrate by Electrospinning for the Detection of Thiabendazole in Soy-Based Foods. Food Chem. 2024, 436, 137703. [Google Scholar] [CrossRef]
- Adade, S.Y.-S.S.; Lin, H.; Johnson, N.A.N.; Zhu, A.; Chen, Z.; Haruna, S.A.; Ekumah, J.-N.; Agyekum, A.A.; Li, H.; Chen, Q. Rapid Quantitative Analysis of Acetamiprid Residue in Crude Palm Oil Using SERS Coupled with Random Frog (RF) Algorithm. J. Food Compos. Anal. 2023, 125, 105818. [Google Scholar] [CrossRef]
- Li, H.; Geng, W.; Hassan, M.; Zuo, M.; Wei, W.; Wu, X.; Ouyang, Q.; Chen, Q. Rapid Detection of Chloramphenicol in Food Using SERS Flexible Sensor Coupled Artificial Intelligent Tools. Food Control 2021, 128, 108186. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, Y.; Shi, J.; Zhang, W.; Zhang, X.; Hang, X.; Li, Z.; Zou, X. Convenient Self-Assembled PDADMAC/PSS/Au@Ag NRs Filter Paper for Swift SERS Evaluate of Non-Systemic Pesticides on Fruit and Vegetable Surfaces. Food Chem. 2023, 424, 136232. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Tian, Y.; Liu, S.; Wang, Y.; Li, H.; Chen, Y.; Gao, Q.; Wang, X.; Chen, M. Multifunctional Surface Enhanced Raman Scattering Substrate Fe3O4@AgNPs@MIL-101 for Pretreatment and Rapid Detection of Pesticide Residues on the Surface of Fruit Peels. Luminescence 2025, 40, e70106. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Ko, Y.; Kwon, G.; Kim, U.; Lee, J.; You, J. 2,2,6,6-Tetramethylpiperidine-1-oxy-Oxidized Cellulose Nanofiber-Based Nanocomposite Papers for Facile In Situ Surface-Enhanced Raman Scattering Detection. Acs Sustain. Chem. Eng. 2019, 7, 15640–15647. [Google Scholar]
- Zhang, M.; Liao, J.; Kong, X.; Yu, Q.; Zhang, M.; Wang, A.X. Ultra-Sensitive, Rapid and On-Site Sensing Harmful Ingredients Used in Aquaculture with Magnetic Fluid SERS. Biosensors 2022, 12, 169. [Google Scholar] [CrossRef]
- Wei, X.; Song, W.; Fan, Y.; Sun, Y.; Li, Z.; Chen, S.; Shi, J.; Zhang, D.; Zou, X.; Xu, X. A SERS aptasensor based on a flexible substrate for interference-free detection of carbendazim in apple. Food Chem. 2023, 431, 137120. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Liu, W.; Hao, R.; Jia, H.; Dai, Y.; Amin, M.; You, H.; Li, T.; Fang, J. Highly active Au NP microarray films for direct SERS detection. J. Mater. Chem. C 2019, 7, 15259–15268. [Google Scholar] [CrossRef]
- Zhang, D.; Fan, Y.; Sun, X.; Wei, X.; Lin, Z.; Zhang, X.; Shi, J.; Battino, M.; Gong, Y.; Shi, B.; et al. SERS determination of hydroxy-α-sanshool in spicy hotpot seasoning: The strategy to restrain the interference of capsaicin and its mechanism. Food Chem. 2023, 413, 135644. [Google Scholar] [CrossRef]
- Qu, Q.; Zeng, C.; Peng, X.; Qi, W.; Wang, M. Sensitive SERS detection of pesticide residues in beverages based on an extraction integrated plasmonic platform. Sens. Actuators B Chem. 2022, 376, 133042. [Google Scholar] [CrossRef]
- Liu, S.; Li, H.; Hassan, M.; Ali, S.; Chen, Q. SERS based artificial peroxidase enzyme regulated multiple signal amplified system for quantitative detection of foodborne pathogens. Food Control 2021, 123, 107733. [Google Scholar] [CrossRef]
- Shi, Y.; Zhu, Y.; Sun, J.; Yin, H.; Yin, J. SERS detection of thiram using a 3D sea cucumber-like composite flexible porous substrate. Analyst 2024, 149, 5041–5051. [Google Scholar] [CrossRef]
- Pan, H.; Ahmad, W.; Jiao, T.; Zhu, A.; Ouyang, Q.; Chen, Q. Label-free Au NRs-based SERS coupled with chemometrics for rapid quantitative detection of thiabendazole residues in citrus. Food Chem. 2022, 375, 131681. [Google Scholar] [CrossRef]
- Xiang, Z.; He, M.; Li, L.; Bobokalonov, J.; Dzhonmurodov, A.; Ji, X. A xylan assisted surface-enhanced Raman scattering substrate for rapid food safety detection. Front. Bioeng. Biotechnol. 2022, 10, 1031152. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhang, N.; Li, Z.; Shi, J.; Tahir, H.; Sun, Y.; Zhang, Y.; Zhang, X.; Holmes, M.; Zou, X. Rapid Detection of Carbendazim Residue in Apple Using Surface-Enhanced Raman Scattering and Coupled Chemometric Algorithm. Foods 2022, 11, 1287. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zheng, X.; Wang, H.; Yan, M.; Chen, Z.; Yang, Q.; Shao, Y. Research advances of SERS analysis method based on silent region molecules for food safety detection. Microchim. Acta 2023, 190, 387. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Hu, W.; Hassan, M.; Zhang, Z.; Chen, Q. A facile and sensitive SERS-based biosensor for colormetric detection of acetamiprid in green tea based on unmodified gold nanoparticles. J. Food Meas. Charact. 2019, 13, 259–268. [Google Scholar] [CrossRef]
- Ko, J.; Lee, C.; Choo, J. Highly sensitive SERS-based immunoassay of aflatoxin B1 using silica-encapsulated hollow gold nanoparticles. J. Hazard. Mater. 2015, 285, 11–17. [Google Scholar] [CrossRef]
- Yuan, J.; Sun, C.; Guo, X.; Yang, T.; Wang, H.; Fu, S.; Li, C.; Yang, H. A rapid Raman detection of deoxynivalenol in agricultural products. Food Chem. 2017, 221, 797–802. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; You, T.; El-Seedi, H.; El-Garawani, I.; Guo, Z.; Zou, X.; Cai, J. Rapid and sensitive detection of zearalenone in corn using SERS-based lateral flow immunosensor. Food Chem. 2022, 396, 133707. [Google Scholar] [CrossRef]
- Guo, Z.; Gao, L.; Jiang, S.; El-Seedi, H.; El-Garawani, I.; Zou, X. Sensitive determination of Patulin by aptamer functionalized magnetic surface enhanced Raman spectroscopy (SERS) sensor. J. Food Compos. Anal. 2022, 115, 104985. [Google Scholar] [CrossRef]
- Yin, L.; Cai, J.; Ma, L.; You, T.; Arslan, M.; Jayan, H.; Zou, X.; Gong, Y. Dual function of magnetic nanocomposites-based SERS lateral flow strip for simultaneous detection of aflatoxin B1 and zearalenone. Food Chem. 2024, 446, 138817. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, C.; Picchetti, P.; Zheng, K.; Zhang, X.; Wu, Y.; Shen, Y.; De Cola, L.; Shi, J.; Guo, Z.; et al. Quantitative SERS sensor for mycotoxins with extraction and identification function. Food Chem. 2024, 456, 140040. [Google Scholar] [CrossRef]
- Guo, Z.; Gao, L.; Yin, L.; Arslan, M.; El-Seedi, H.; Zou, X. Novel mesoporous silica surface loaded gold nanocomposites SERS aptasensor for sensitive detection of zearalenone. Food Chem. 2022, 403, 134384. [Google Scholar] [CrossRef]
- Xue, S.; Yin, L.; Gao, S.; Zhou, R.; Zhang, Y.; Jayan, H.; El-Seedi, H.; Zou, X.; Guo, Z. A film-like SERS aptasensor for sensitive detection of patulin based on GO@Au nanosheets. Food Chem. 2024, 441, 138364. [Google Scholar] [CrossRef]
- Wu, X.; Yin, L.; Gao, S.; Zhou, R.; Zhang, Y.; Xue, S.; Jayan, H.; El-Seedi, H.; Zou, X.; Guo, Z. Core-satellite nanoassembly system with aptamer-conjugated Au@Ag nanoparticles for SERS detection of patulin in apples. Food Control 2024, 159, 110293. [Google Scholar] [CrossRef]
- He, P.; Hassan, M.; Yang, W.; Shi, Z.; Zhou, X.; Xu, Y.; Ouyang, Q.; Chen, Q. Rapid and stable detection of three main mycotoxins in rice using SERS optimized AgNPs@K30 coupled multivariate calibration. Food Chem. 2022, 398, 133883. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, Q.; Xu, X.; Jin, Y.; Wang, Y.; Zhang, L.; Yang, W.; He, L.; Feng, X.; Chen, Y. Microarray surface enhanced Raman scattering based immunosensor for multiplexing detection of mycotoxin in foodstuff. Sens. Actuators B Chem. 2018, 266, 115–123. [Google Scholar] [CrossRef]
- Zhu, J.; Jiang, X.; Rong, Y.; Wei, W.; Wu, S.; Jiao, T.; Chen, Q. Label-free detection of trace level zearalenone in corn oil by surface-enhanced Raman spectroscopy (SERS) coupled with deep learning models. Food Chem. 2023, 414, 135705. [Google Scholar] [CrossRef]
- Fu, X.; Yin, L.; Zhang, Y.; Zhou, R.; El-Seedi, H.; Zou, X.; Gong, Y.; Guo, Z. SERS aptasensor detection of aflatoxin B1 based on silicon-au-ag Janus nanocomposites. Food Chem. 2024, 467, 142325. [Google Scholar] [CrossRef]
- Yin, L.; You, T.; Arslan, M.; El-Seedi, H.; Guo, Z.; Zou, X.; Cai, J. Dual-layers Raman reporter-tagged Au@Ag combined with core-satellite assemblies for SERS detection of Zearalenone. Food Chem. 2023, 429, 136834. [Google Scholar] [CrossRef] [PubMed]
- Kutsanedzie, F.; Agyekum, A.; Annavaram, V.; Chen, Q. Signal-enhanced SERS-sensors of CAR-PLS and GA-PLS coupled AgNPs for ochratoxin A and aflatoxin B1 detection. Food Chem. 2020, 315, 126231. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, X.; Yin, L.; Picchetti, P.; Yang, T.; Zhou, R.; Zhao, C.; Xue, S.; Zhang, Z.; Zou, X.; et al. Competitive binding strategy for reliable signal-off surface enhanced Raman scattering sensing in protecting apples from patulin without external interference. J. Food Compos. Anal. 2024, 139, 107052. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, P.; Wang, M.; Zuo, M.; El-Seedi, H.; Chen, Q.; Shi, J.; Zou, X. Rapid enrichment detection of patulin and alternariol in apple using surface enhanced Raman spectroscopy with coffee-ring effect. LWT—Food Sci. Technol. 2021, 152, 122333. [Google Scholar] [CrossRef]
- Wu, W.; Li, Y.; Song, P.; Xu, Q.; Long, N.; Li, P.; Zhou, L.; Fu, B.; Wang, J.; Kong, W. Metal-organic framework (MOF)-based sensors for exogenous contaminants in food: Mechanisms, advances, and prospects. Trends Food Sci. Technol. 2023, 138, 238–271. [Google Scholar] [CrossRef]
- Yang, Q.; Sun, D.; Pu, H. Porous materials nanohybridized with metal nanoparticles as substrates for enhancing SERS detection in food safety applications. Trends Food Sci. Technol. 2023, 141, 104202. [Google Scholar] [CrossRef]
- Wang, B.; Han, Y.; Zhang, L.; Chen, Z.; Zhang, W.; Ren, M.; Shi, J.; Xu, X.; Yang, Y. Surface-enhanced Raman scattering based on noble metal nanoassemblies for detecting harmful substances in food. Crit. Rev. Food Sci. Nutr. 2024, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Terry, L.; Sanders, S.; Potoff, R.; Kruel, J.; Jain, M.; Guo, H. Applications of surface-enhanced Raman spectroscopy in environmental detection. Anal. Sci. Adv. 2022, 3, 113–145. [Google Scholar] [CrossRef]
- Zhang, X.; Dai, Z.; Si, S.; Zhang, X.; Wu, W.; Deng, H.; Wang, F.; Xiao, X.; Jiang, C. Ultrasensitive SERS Substrate Integrated with Uniform Subnanometer Scale “Hot Spots” Created by a Graphene Spacer for the Detection of Mercury Ions. Small 2016, 13, 1603347. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, P.; Yosri, N.; Chen, Q.; Elseedi, H.; Zou, X.; Yang, H. Detection of Heavy Metals in Food and Agricultural Products by Surface-enhanced Raman Spectroscopy. Food Rev. Int. 2021, 39, 1440–1461. [Google Scholar] [CrossRef]
- Xu, G.; Song, P.; Xia, L. Examples in the detection of heavy metal ions based on surface-enhanced Raman scattering spectroscopy. Nanophotonics 2021, 10, 4419–4445. [Google Scholar] [CrossRef]
- Mukherjee, A.; Renu, K.; Gopalakrishnan, A.; Veeraraghavan, V.; Vinayagam, S.; Paz-Montelongo, S.; Dey, A.; Vellingiri, B.; George, A.; Madhyastha, H.; et al. Heavy Metal and Metalloid Contamination in Food and Emerging Technologies for Its Detection. Sustainability 2023, 15, 1195. [Google Scholar] [CrossRef]
- Pu, H.; Fang, T.; Wu, Z.; Sun, D. Advancements in recyclable photocatalytic semiconductor substrates for SERS detection in food safety applications. Trends Food Sci. Technol. 2023, 138, 697–707. [Google Scholar] [CrossRef]
- Wang, C.; Sun, S.; Wang, P.; Zhao, H.; Li, W. Nanotechnology-based analytical techniques for the detection of contaminants in aquatic products. Talanta 2024, 269, 125462. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.; Ahmad, W.; Zareef, M.; Rong, Y.; Xu, Y.; Jiao, T.; He, P.; Li, H.; Chen, Q. Rapid detection of mercury in food via rhodamine 6G signal using surface-enhanced Raman scattering coupled multivariate calibration. Food Chem. 2021, 358, 129844. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, M.; Lu, Y.; Wu, C.; Xu, Y.; Lin, D.; Lu, D.; Zhou, T.; Feng, S. Facile Ag-Film Based Surface Enhanced Raman Spectroscopy Using DNA Molecular Switch for Ultra-Sensitive Mercury Ions Detection. Nanomaterials 2018, 8, 596. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Yao, L.; Yao, B.; Meng, X.; Wu, Q.; Chen, Z.; Chen, W. Low-cost signal enhanced colorimetric and SERS dual-mode paper sensor for rapid and ultrasensitive screening of mercury ions in tea. Food Chem. 2024, 463, 141375. [Google Scholar] [CrossRef]
- Park, J.; Chai, K.; Kim, W.; Yoon, T.; Park, H.; Kim, W.; You, J.; Na, S.; Park, J. Highly enhanced Hg2+2+detection using optimized DNA and a double coffee ring effect-based SERS map. Iosensors Bioelectron. 2024, 264, 116646. [Google Scholar] [CrossRef]
- Yao, L.; Chen, Y.; Wang, R.; Yan, C.; Xu, J.; Yao, B.; Cheng, J.; Chen, W. Rapid and sensitive detection of Hg2+ with a SERS-enhanced lateral flow strip. Analyst 2022, 147, 4337–4347. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Duan, J.; Hou, J.; Hou, Q.; Yang, Y.; Li, H.; Ai, S. Rapid and ultrasensitive detection of mercury ion (II) by colorimetric and SERS method based on silver nanocrystals. Microchem. J. 2020, 161, 105790. [Google Scholar] [CrossRef]
- Wan, Y.; Li, J.; Jiang, G.; Qi, J.; Pi, F. Dual-Probe SERS Chip: A Rapid and Ratiometric Detection of Trace Hg2+ in Food Samples. ACS Appl. Nano Mater. 2025, 8, 6179–6187. [Google Scholar] [CrossRef]
- Barimah, A.; Chen, P.; Yin, L.; El-Seedi, H.; Zou, X.; Guo, Z. SERS nanosensor of 3-aminobenzeneboronic acid labeled Ag for detecting total arsenic in black tea combined with chemometric algorithms. J. Food Compos. Anal. 2022, 110, 104588. [Google Scholar] [CrossRef]
- Barimah, A.; Guo, Z.; Agyekum, A.; Guo, C.; Chen, P.; El-Seedi, H.; Zou, X.; Chen, Q. Sensitive label-free Cu2O/Ag fused chemometrics SERS sensor for rapid detection of total arsenic in tea. Food Control 2021, 130, 108341. [Google Scholar] [CrossRef]
- Liang, Y.; Li, H.; Xu, N.; Zhu, J.; Wu, X.; Wang, Y. Preparation of arsenic (iii) monoclonal antibodies and preliminary evaluation of a novel silver-coated gold nanorod SERS immunoassay strip construction. Anal. Methods 2023, 15, 5823–5836. [Google Scholar] [CrossRef]
- Chen, P.; Yin, L.; El-Seedi, H.; Zou, X.; Guo, Z. Green reduction of silver nanoparticles for cadmium detection in food using surface-enhanced Raman spectroscopy coupled multivariate calibration. Food Chem. 2022, 394, 133481. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, P.; Yin, L.; Zuo, M.; Chen, Q.; El-Seedi, H.; Zou, X. Determination of lead in food by surface-enhanced Raman spectroscopy with aptamer regulating gold nanoparticles reduction. Food Control 2021, 132, 108498. [Google Scholar] [CrossRef]
- Liu, M.; Zareef, M.; Zhu, A.; Wei, W.; Li, H.; Chen, Q. SERS-based Au@Ag core-shell nanoprobe aggregates for rapid and facile detection of lead ions. Food Control 2023, 155, 110078. [Google Scholar] [CrossRef]
- Song, Y.; Ma, Z.; Fang, H.; Zhang, Q.; Zhou, Q.; Chen, Z.; Yang, H.; Wang, F. Au Sputtered Paper Chromatography Tandem Raman Platform for Sensitive Detection of Heavy Metal Ions. ACS Sens. 2020, 5, 1455–1464. [Google Scholar] [CrossRef]
- Yin, L.; Jayan, H.; Cai, J.; El-Seedi, H.; Guo, Z.; Zou, X. Development of a Sensitive SERS Method for Label-Free Detection of Hexavalent Chromium in Tea Using Carbimazole Redox Reaction. Foods 2023, 12, 2673. [Google Scholar] [CrossRef]
- Liang, J.; Liu, H.; Lan, C.; Fu, Q.; Huang, C.; Luo, Z.; Jiang, T.; Tang, Y. Silver nanoparticle enhanced Raman scattering-based lateral flow immunoassays for ultra-sensitive detection of the heavy metal chromium. Nanotechnology 2014, 25, 495501. [Google Scholar] [CrossRef]
- Shi, Y.; Chen, N.; Su, Y.; Wang, H.; He, Y. Silicon nanohybrid-based SERS chips armed with an internal standard for broad-range, sensitive and reproducible simultaneous quantification of lead (II) and mercury (II) in real systems. Nanoscale 2018, 10, 4010–4018. [Google Scholar] [CrossRef]
- Chen, Q.; Tang, J.; Huang, Z.; Li, H.; Chen, Z.; Xiang, L. SERS scaffold based on silver nanoparticles with multi-ingredient heavy metal ligands for the determination of Mn (II). Colloid Polym. Sci. 2023, 301, 949–956. [Google Scholar] [CrossRef]
- Jin, Y.; Li, C.; Huang, Z.; Jiang, L. Simultaneous Quantitative Determination of Low-Concentration Preservatives and Heavy Metals in Tricholoma Matsutakes Based on SERS and FLU Spectral Data Fusion. Foods 2023, 12, 4267. [Google Scholar] [CrossRef]
- Li, J.; Guan, H.; Zhou, Y.; Pei, S.; Yu, K.; Zhao, Y. Detection of Heavy Metal Copper Stress in Apple Rootstocks Using Surface-Enhanced Raman Spectroscopy. J. Agric. Food Chem. 2025, 73, 10787–10798. [Google Scholar] [CrossRef]
- Yang, Z.; Li, J.; Zuo, L.; Zhao, Y.; Yu, K. Collaborative estimation of heavy metal stress in wheat seedlings based on LIBS-Raman spectroscopy coupled with machine learning. J. Anal. At. Spectrom. 2023, 38, 2059–2072. [Google Scholar] [CrossRef]
- Hassan, M.; He, P.; Zareef, M.; Li, H.; Chen, Q. Rapid detection and prediction of chloramphenicol in food employing label-free HAu/Ag NFs-SERS sensor coupled multivariate calibration. Food Chem. 2021, 374, 131765. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Geng, W.; Zheng, Z.; Haruna, S.; Chen, Q. Flexible SERS sensor using AuNTs-assembled PDMS film coupled chemometric algorithms for rapid detection of chloramphenicol in food. Food Chem. 2023, 418, 135998. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhu, A.; Adade, S.; Ali, S.; Chen, Q.; Wei, J.; Chen, X.; Jiao, T.; Chen, Q. Ag@Au core-shell nanoparticle-based surface-enhanced Raman scattering coupled with chemometrics for rapid determination of chloramphenicol residue in fish. Food Chem. 2023, 438, 138026. [Google Scholar] [CrossRef]
- Hassan, M.; Wei, S.; Xu, Y.; Zareef, M.; Li, H.; Sayada, J.; Chen, Q. Ascorbate functionalized Au@AgNPs SERS sensor combined random frog-partial least squares for the prediction of chloramphenicol in milk. J. Food Compos. Anal. 2024, 129, 106106. [Google Scholar] [CrossRef]
- Michalowska, A.; Krajczewski, J.; Kudelski, A. Magnetic iron oxide cores with attached gold nanostructures coated with a layer of silica: An easily, homogeneously deposited new nanomaterial for surface-enhanced Raman scattering measurements. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 277, 121266. [Google Scholar] [CrossRef]
- Li, J.; Zuo, M.; Zhang, W.; Zou, X.; Sun, Z. Diazo Coupling-Based Ultrasensitive SERS Detection of Capsaicin and Its Application in Identifying Gutter Oil. Food Anal. Methods 2022, 15, 3468–3478. [Google Scholar] [CrossRef]
- Jiang, L.; Wei, W.; Liu, S.; Haruna, S.; Zareef, M.; Ahmad, W.; Hassan, M.; Li, H.; Chen, Q. A tailorable and recyclable TiO2 NFSF/Ti@Ag NPs SERS substrate fabricated by a facile method and its applications in prohibited fish drugs detection. J. Food Meas. Charact. 2022, 16, 2890–2898. [Google Scholar] [CrossRef]
- Peng, L.; Zhu, A.; Ahmad, W.; Adade, S.; Chen, Q.; Wei, W.; Chen, X.; Wei, J. A three-channel biosensor based on stimuli-responsive catalytic activity of the Fe3O4@Cu for on-site detection of tetrodotoxin in fish. Food Chem. 2024, 460, 140566. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zhang, D.; Zhao, L.; Shi, B.; Sun, Y.; Shi, J.; Battino, M.; Wang, G.; Wang, W.; Zou, X. A novel strategy based on dynamic surface-enhanced Raman scattering spectroscopy (D-SERS) for the discrimination and quantification of hydroxyl-sanshools in the pericarps of genus Zanthoxylum. Ind. Crops Prod. 2022, 183, 114940. [Google Scholar] [CrossRef]
- Wei, W.; Hassan, M.; Wu, J.; Mu, X.; Li, H.; Chen, Q. Competitive Ratiometric Aptasensing with Core-Internal Standard-Shell Structure Based on Surface-Enhanced Raman Scattering. J. Agric. Food Chem. 2023, 71, 857–866. [Google Scholar] [CrossRef] [PubMed]
- Adade, S.; Lin, H.; Johnson, N.; Sun, Q.; Nunekpeku, X.; Ahmad, W.; Kwadzokpui, B.; Ekumah, J.; Chen, Q. Rapid qualitative and quantitative analysis of benzo (b) fluoranthene (BbF) in shrimp using SERS-based sensor coupled with chemometric models. Food Chem. 2024, 454, 139836. [Google Scholar] [CrossRef]
- Adade, S.Y.S.S.; Lin, H.; Nunekpeku, X.; Johnson, N.A.N.; Agyekum, A.A.; Zhao, S.; Teye, E.; Qianqian, S.; Kwadzokpui, B.A.; Ekumah, J.N.; et al. Flexible paper-based AuNP sensor for rapid detection of diabenz (a, h) anthracene (DbA) and benzo (b) fluoranthene (BbF) in mussels coupled with deep learning algorithms. Food Control 2024, 168, 110966. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Q.; Hu, X.; Han, F.; Zhu, C. Silver-nanoparticles/graphene hybrids for effective enrichment and sensitive SERS detection of polycyclic aromatic hydrocarbons. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 228, 117783. [Google Scholar] [CrossRef]
- Rong, Y.; Ali, S.; Ouyang, Q.; Wang, L.; Li, H.; Chen, Q. Development of a bimodal sensor based on upconversion nanoparticles and surface-enhanced Raman for the sensitive determination of dibutyl phthalate in food. J. Food Compos. Anal. 2021, 100, 103929. [Google Scholar] [CrossRef]
- Zhu, A.; Ali, S.; Jiao, T.; Wang, Z.; Xu, Y.; Ouyang, Q.; Chen, Q. Facile synthesis of fluorescence-SERS dual-probe nanocomposites for ultrasensitive detection of sulfur-containing gases in water and beer samples. Food Chem. 2023, 420, 136095. [Google Scholar] [CrossRef]
- Xu, H.; Sun, Y.; Pei, J.; Yu, X.; Zhang, J. Mesoporous Au-CuO substrate with dual super-hydrophilicity and efficient chemical enhancement for 4-aminothiophenol SERS detection. J. Alloys Compd. 2024, 1002, 175198. [Google Scholar] [CrossRef]
- Wang, J.; Xu, W.; Xu, S. Recent advances in surface-enhanced Raman spectroscopy (SERS) combined with machine learning algorithms in biomedical fields. J. Light Scatt. 2024, 36, 1–15. [Google Scholar]
- Li, W.; Guo, L.; Ding, X.; Ding, Y.; Ji, L.; Xia, X.; Wang, K. High-Throughput Single-Molecule Surface-Enhanced Raman Spectroscopic Profiling of Single-Amino Acid Substitutions in Peptides by a Gold Plasmonic Nanopore. ACS Nano 2024, 18, 19200–19207. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhou, J.; Nicolò, M.; Roman, K.; Wang, K.; Denis, G. Enhanced Optical Spectroscopy for Multiplexed DNA and Protein-Sequencing with Plasmonic Nanopores: Challenges and Prospects. Anal. Chem. 2022, 94, 503–514. [Google Scholar] [CrossRef]
- Zhou, J.; Lan, Q.; Li, W.; Ji, L.; Wang, K.; Xia, X. Single Molecule Protein Segments Sequencing by a Plasmonic Nanopore. Nano Lett. 2023, 23, 2800–2807. [Google Scholar] [CrossRef]
- Li, W.; Zhou, J.; Lan, Q.; Ding, X.; Pan, X.; Saud, A.; Ji, L.; Wang, K.; Xia, X. Single-Molecule Electrical and Spectroscopic Profiling Protein Allostery Using a Gold Plasmonic Nanopore. Nano Lett. 2023, 23, 2586–2592. [Google Scholar] [CrossRef]
- Lenong, S.; Lenong, Y.; Tan, E.; Sim, H.Y.F.; Koh, C.S.L.; Lee, Y.H.; Chong, C.; Ng, L.S.; Chen, J.R.T.; Pang, D.W.C.; et al. Noninvasive and Point-of-Care Surface-Enhanced Raman Scattering (SERS)-Based Breathalyzer for Mass Screening of Coronavirus Disease 2019 (COVID-19) under 5 min. ACS Nano 2022, 16, 2629–2639. [Google Scholar] [CrossRef]
- Cai, J.; Lin, Y.; Yu, X.; Yang, Y.; Hu, Y.; Gao, L.; Xiao, H.; Du, J.; Wang, H.; Zhong, X.; et al. Multifunctional AuAg-doping Prussian Blue-based MOF: Enhanced colorimetric catalytic activities and amplified SERS signals for bacteria discrimination and detection. Sens. Actuators B Chem. 2023, 394, 134279. [Google Scholar] [CrossRef]
- Duan, N.; Chang, B.; Zhang, H.; Wang, Z.; Wu, S. typhimurium detection using a surface-enhanced Raman scattering-based aptasensor. Int. J. Food Microbiol. 2016, 218, 38–43. [Google Scholar] [CrossRef]
- Li, H.; Chen, Q.; Ouyang, Q.; Zhao, J. Fabricating a Novel Raman Spectroscopy-Based Aptasensor for Rapidly Sensing Salmonella typhimurium. Food Anal. Methods 2017, 10, 3032–3041. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, M.; Barimah, A.; Chen, Q.; Li, H.; Shi, J.; El-Seedi, H.; Zou, X. Label-free surface enhanced Raman scattering spectroscopy for discrimination and detection of dominant apple spoilage fungus. Int. J. Food Microbiol. 2021, 338, 108990. [Google Scholar] [CrossRef]
- Liu, S.; Li, H.; Hassan, M.; Zhu, J.; Wang, A.; Ouyang, Q.; Zareef, M.; Chen, Q. Amplification of Raman spectra by gold nanorods combined with chemometrics for rapid classification of four Pseudomonas. Int. J. Food Microbiol. 2019, 304, 58–67. [Google Scholar] [CrossRef]
- Xu, Y.; Hassan, M.; Sharma, A.; Li, H.; Chen, Q. Recent advancement in nano-optical strategies for detection of pathogenic bacteria and their metabolites in food safety. Crit. Rev. Food Sci. Nutr. 2021, 63, 486–504. [Google Scholar] [CrossRef]
- Fu, Q.; Zhang, Y.; Wang, P.; Pi, J.; Qiu, X.; Guo, Z.; Huang, Y.; Zhao, Y.; Li, S.; Xu, J. Rapid identification of the resistance of urinary tract pathogenic bacteria using deep learning-based spectroscopic analysis. Anal. Bioanal. Chem. 2021, 413, 7401–7410. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yu, B.; Yang, B.; Zhang, X.; Yu, G.; Wang, Z.; Qin, H.; Ma, Y. Precision Fabrication and Optimization of Nanostructures for Exosome Detection via Surface-Enhanced Raman Spectroscopy. Nanomaterials 2025, 15, 266. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Chen, B.; Li, Z.; Shan, Y.; Jian, M.; Meng, X.; Wang, Z. Accurate diagnosis of thyroid cancer using a combination of surface-enhanced Raman spectroscopy of exosome on MXene-coated gold@silver core@shell nanoparticle substrate and deep learning. Chem. Eng. J. 2024, 488, 150835. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, J.; Zhao, J.; Weng, G.; Li, J.; Zhao, J. Growth of Spherical Gold Satellites on the Surface of Au@Ag@SiO2 Core Shell Nanostructures Used for an Ultrasensitive SERS Immunoassay of Alpha-Fetoprotein. Acs Appl. Mater. Interfaces 2019, 11, 3617–3626. [Google Scholar] [CrossRef]
- Lu, T.; Wang, L.; Xia, Y.; Jin, Y.; Zhang, L.; Du, S. A multimer-based SERS aptasensor for highly sensitive and homogeneous assay of carcinoembryonic antigens. Analyst 2021, 146, 3016–3024. [Google Scholar] [CrossRef]
- Tong, L.; Fu, H.; Peng, L.; Li, Q.; Shi, Q.; Zhou, J. A Highly Sensitive Label-Free Quantitative Detection Method for Tumor Marker Based on Au NRs/PMMA Substrate. Spectrosc. Spectr. Anal. 2019, 39, 784–790. [Google Scholar]
- Das, A.; Kim, K.; Park, S.; Choi, N.; Choo, J. SERS-based serodiagnosis of acute febrile diseases using plasmonic nanopopcorn microarray platforms. Biosens. Bioelectron. 2021, 192, 113525. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Dang, H.; Park, S.; Chen, L.; Choo, J. SERS-PCR assays of SARS-CoV-2 target genes using Au nanoparticles-internalized Au nanodimple substrates. Biosens. Bioelectron. 2022, 197, 113736. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Liao, J.; Tsai, H.; Wang, H.; Sitjar, J. Focused ion beam-fabricated nanorod substrate for label-free surface-enhanced Raman spectroscopy and enabling dual virus detection. Talanta 2024, 278, 126466. [Google Scholar] [CrossRef]
- Pang, Y.; Wang, J.; Xiao, R.; Wang, S. SERS molecular sentinel for the RNA genetic marker of PB1-F2 protein in highly pathogenic avian influenza (HPAI) virus. Biosens. Bioelectron. 2014, 61, 460–465. [Google Scholar] [CrossRef]
- Eremina, O.; Yarenkov, N.; Bikbaeva, G.; Kapitanova, O.; Samodelova, M.; Shekhovtsova, T.; Kolesnikov, I.; Syuy, A.; Arsenin, A.; Volkov, V.; et al. Silver nanoparticle-based SERS sensors for sensitive detection of amyloid-β aggregates in biological fluids. Talanta 2023, 266, 124970. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.; Ali, S.; Jiao, T.; Wang, Z.; Ouyang, Q.; Chen, Q. Advances in surface-enhanced Raman spectroscopy technology for detection of foodborne pathogens. Compr. Rev. Food Sci. Food Saf. 2023, 22, 1466–1494. [Google Scholar] [CrossRef]
- Bodelón, G.; Montes-García, V.; Pérez-Juste, J.; Pastoriza-Santos, I. Surface-Enhanced Raman Scattering Spectroscopy for Label-Free Analysis of P. aeruginosa Quorum Sensing. Front. Cell. Infect. Microbiol. 2018, 8, 143. [Google Scholar] [CrossRef]
- Gao, Y.; Feng, Y.; Zhou, L.; Petti, L.; Wang, Z.; Zhou, J.; Xie, S.; Chen, J.; Qing, Y. Ultrasensitive SERS-Based Immunoassay of Tumor Marker in Serum Using Au-Ag Alloy Nanoparticals and Ag/AgBr Hybrid Nanostructure. Nano 2018, 13, 3–14. [Google Scholar] [CrossRef]
- Wang, H.; Vo-Dinh, T. Multiplex detection of breast cancer biomarkers using plasmonic molecular sentinel nanoprobes. Nanotechnology 2009, 20, 065101. [Google Scholar] [CrossRef]
- Lu, X.; Yao, C.; Sun, L.; Li, Z. Plasmon-enhanced biosensors for microRNA analysis and cancer diagnosis. Biosens. Bioelectron. 2022, 203, 114041. [Google Scholar] [CrossRef] [PubMed]
- Abalde-Cela, S.; Aldeanueva-Potel, P.; Mateo-Mateo, C.; Rodríguez-Lorenzo, L.; Alvarez-Puebla, R.; Liz-Marzán, L. Surface-enhanced Raman scattering biomedical applications of plasmonic colloidal particles. J. R. Soc. Interface 2010, 7, S435–S450. [Google Scholar] [CrossRef] [PubMed]
- Yuan, K.; Jurado-Sánchez, B.; Escarpa, A. Nanomaterials meet surface-enhanced Raman scattering towards enhanced clinical diagnosis: A review. J. Nanobiotechnolog 2022, 20, s12951. [Google Scholar] [CrossRef]
- Chen, Z.; Du, J.; Shi, J. Advances in Surface Enhanced Raman Spectroscopy for Detection of Enviromentental Pollutants. Chemistry 2024, 87, 1045–1054. (In Chinese) [Google Scholar]
- Zhao, Y.; Yamaguchi, Y.; Ni, Y.; Li, M.; Dou, X. A SERS-based capillary sensor for the detection of mercury ions in environmental water. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 233, 118193. [Google Scholar] [CrossRef]
- Han, K.; Yan, Z.; Ding, Z.; Zhou, P.; Ye, C.; Qin, L.; Bao, Z.; Zhang, M.; Zhang, W. High-sensitivity SERS sensor leveraging three-dimensional Ti3C2Tx/TiO2/W18O49 semiconductor heterostructures for reliable detection of trace micro/nanoplastics in environmental matrices. Talanta 2025, 286, 127474. [Google Scholar] [CrossRef]
- Vafakish, B.; Wilson, L. A Highly Sensitive Chitosan-Based SERS Sensor for the Trace Detection of a Model Cationic Dye. Int. J. Mol. Sci. 2024, 25, 9327. [Google Scholar] [CrossRef]
- Shang, Y.; Zhang, X.; Wang, X.; Yang, J.; Shi, X.; Qu, L.; Gu, Y. Au@Fe2O3 nanoflowers as highly sensitive SERS substrates to detect organic pollutants in water. Mater. Sci. Eng. B Adv. Funct. Solid-State Mater. 2025, 320, 118396. [Google Scholar] [CrossRef]
- Tran, H.; Nguyen, N.; Ly, N.; Joo, S.; Vasseghian, Y. Core-shell Au@ZIF-67-based pollutant monitoring of thiram and carbendazim pesticides. Environ. Pollut. 2023, 317, 120775. [Google Scholar] [CrossRef]
- Wang, A.; Liu, G.; Zhao, Y.; Tan, X.; Rogachev, A.; Ding, Q.; Jiang, X. Highly sensitive SERS platform with analyte enrichment for multiplex organic pollutants detection in river water. Appl. Surf. Sci. 2025, 697, 163016. [Google Scholar] [CrossRef]
- Tira, D.; Potara, M.; Astilean, S. Fabrication of stable network-like gold nanostructures in solution and their assessment as efficient NIR-SERS platforms for organic pollutants detection. Mater. Res. Bull. 2014, 64, 267–273. [Google Scholar] [CrossRef]
- Vassalini, I.; Ribaudo, G.; Gianoncelli, A.; Casula, M.; Alessandri, I. Plasmonic hydrogels for capture, detection and removal of organic pollutants. Environ. Sci. Nano 2020, 7, 3888–3900. [Google Scholar] [CrossRef]
- Li, J.; Peng, W.; Wang, A.; Wan, M.; Zhou, Y.; Zhang, X.; Jin, S.; Zhang, F. Highly sensitive and selective SERS substrates with 3D hot spot buildings for rapid mercury ion detection. Analyst 2023, 148, 4044–4052. [Google Scholar] [CrossRef]
- Song, D.; Yang, R.; Long, F.; Zhu, A. Applications of magnetic nanoparticles in surface-enhanced Raman scattering (SERS) detection of environmental pollutants. J. Environ. Sci. 2019, 80, 14–34. [Google Scholar] [CrossRef]
- Fateixa, S.; Landauer, M.; Schneider, J.; Kumar, S.; Böhm, R. Additive Manufacturing-Enabled Architected Nanocomposite Lattices Coated with Plasmonic Nanoparticles for Water Pollutants Detection. Macromol. Mater. Eng. 2023, 308, 2300060. [Google Scholar] [CrossRef]
- Zhao, K.; Lin, J.; Guo, L. ZnO/Ag porous nanosheets used as substrate for surface-enhanced Raman scattering to detect organic pollutant. RSC Adv. 2015, 5, 53524–53528. [Google Scholar] [CrossRef]
- Xu, Y.; Su, J.; Jia, Z.; Wang, Y. Convenient Au@Ag Double-Layer Nanoarray Fabricated by Rapid Thermal Annealing and Chemical Replacement Method for Surface-Enhanced Raman Spectroscopy Sensing. Adv. Eng. Mater. 2024, 26, 2401177. [Google Scholar] [CrossRef]
- Jayaprakash, V.; You, J.; Kanike, C.; Liu, J.; McCallum, C.; Zhang, X. Determination of Trace Organic Contaminant Concentration via Machine Classification of Surface-Enhanced Raman Spectra. Environ. Sci. Technol. 2024, 58, 15619–15628. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Park, H.; Park, J. Carboxylate surfactants capped Ag-nanospheres as SERS substrate for detecting water-soluble pollutants. Chem. Phys. Lett. 2023, 832, 140863. [Google Scholar] [CrossRef]
- Lu, Y.; Li, C.; Wang, Y.; Liu, C.; Wang, Z.; Liu, J.; Fan, H.; Feng, Z.; Sun, T. A recyclable SERS-DGT device for in-situ sensing of sulfamethazine by Au@g-C3N4NS in water. Water Res. 2024, 253, 121307. [Google Scholar] [CrossRef]
- La, C.; Piazza, S.; Freni, G. Pollutant Monitoring Solutions in Water and Sewerage Networks: A Scoping Review. Water 2025, 17, 1423. [Google Scholar] [CrossRef]
- Gu, Y.; Fang, P.; Chen, Y.; Xie, T.; Yang, G.; Qu, L. Multi-channel surface-enhanced Raman spectroscopy (SERS) platform for pollutant detection in water fabricated on polydimethylsiloxane. Microchim. Acta 2024, 191, 595. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wu, Z.; Jin, C.; Zhang, J. Machine learning assisted dual-functional nanophotonic sensor for organic pollutant detection and degradation in water. npj Clean Water 2024, 7, 3. [Google Scholar] [CrossRef]
- Raj, D.; Tayyaba, N.; De, V.; Scaglione, F.; Rizzi, P. Ultrasensitive Detection of Malachite Green Isothiocyanate Using Nanoporous Gold as SERS Substrate. Materials 2023, 16, 4620. [Google Scholar] [CrossRef]
- Li, Y.; Chen, B.; Yang, S.; Jiao, Z.; Zhang, M.; Yang, Y.; Gao, Y. Advances in environmental pollutant detection techniques: Enhancing public health monitoring and risk assessment. Environmental 2025, 197, 109365. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Y.; Song, H. Synergistic effects of photonic crystal and gold nanostars for quantitative SERS detection of 3-Phenoxybenzoic acid. Appl. Surf. Sci. 2019, 476, 587–593. [Google Scholar] [CrossRef]
Target Mycotoxin | Substrate Strategy | LOD | Linear Range | Key Innovations | Ref. |
---|---|---|---|---|---|
Aflatoxin B1 (AFB1) | Janus Au-Ag nanocomposites | 0.1 ng/mL | N/S | Controllable nanogaps for EM field enhancement; prevents random aggregation | [113] |
Magnetic SERS lateral flow strip | 0.1 μg/kg | 0.1–10 μg/kg | Simultaneous AFB1/ZEN detection; dual-functional SERS tags | [105] | |
Zearalenone (ZEN) | Mesoporous silica-loaded AuNPs aptasensor | 0.0064 ng/mL | 3–200 ng/mL | Aptamer masking effect; strong hot spots in nanogaps | [108] |
Au nanorods + 1D-CNN model | 6.81 × 10−4 μg/mL | N/S | Deep learning algorithm for matrix interference resistance | [112] | |
Ochratoxin A (OTA) | pH-optimized AgNPs (pH = 11) | 2.63 pg/mL | N/S | Ultrahigh enhancement factor (1.45 × 108) | [115] |
Patulin (PAT) | MOF-DNA nanoassembly | 0.0281 ng/mL | 10 pg/mL–1 μg/mL | Signal-off detection; blocks nonspecific adsorption | [109] |
GO@Au nanosheet film | 0.46 ng/mL | 1–70 ng/mL | Competitive binding-regulated hotspot density | [108] | |
Multiple Mycotoxins | Microarray SERS immunosensor | AFB1: 0.061 μg/kg ZEN: 0.53 μg/kg OTA: 0.26 μg/kg | N/S | Triplex detection; high-throughput gold chip integration | [111] |
Analyte | Substrate Design | LOD | Linear Range | Key Features | Ref. |
---|---|---|---|---|---|
Mercury (Hg2+) | Au@Ag core-shell NPs/R6G probe | 0.48 pM | 10−3–102 μg/g | Hg2+-induced probe desorption (signal-off) | [128] |
Ag film/DNA molecular switch | 1.35 × 10−15 M | 5 × 10−15–10−10 M | T-Hg2+-T conformational switching; blood-compatible | [129] | |
Arsenic (As) | Cu2O/Ag heterojunction | 0.00561 μg/g | 0.01–5 μg/g | Label-free detection; CARS-PLS algorithm optimized | [136] |
ABBA-labeled Ag nanosensor | 0.0273 μg/g | 0.05–10 μg/g | As-O-Ag linkage (signal-on effect) | [135] | |
Cadmium (Cd2+) | Sodium alginate-synthesized AgNPs | 2.36 × 10−5 μg/L | 10−4–102 μg/L | Green synthesis; edge enrichment integration | [138] |
Lead (Pb2+) | Au@Ag nanorods/GSH-4MBA | 0.021 μg/L | 0.5–1000 μg/L | Pb2+-triggered self-assembly (hotspot generation) | [140] |
Aptamer-regulated AuNPs | 0.1 μg/L | 0.1–1000 μg/L | Graphene-catalyzed growth kinetics control | [139] | |
Chromium (Cr6+) | Carbimazole-functionalized Au@Ag NPs | 0.945 mg/kg | 1–100 mg/kg | Redox reaction-mediated peak attenuation at 595 cm−1 | [142] |
Multimetal | Paper chromatography/Au-sputtered substrate | 1 μM (Cd2+/Cu2+/Ni2+) | 1–100 μM | Simultaneous tri-metal detection; pretreatment-free | [141] |
Au/graphene sandwich structure | 19.8 ppt (Pb2+) | 100 pM–10 μM | Synchronous Hg2+/Pb2+ detection; wastewater applicable | [144] |
Target Analyte | Substrate Strategy | LOD | Detection Range | Features | Ref. |
---|---|---|---|---|---|
Chloramphenicol (CAP) | Flexible paper-based flower-like AgNPs + MSCCARS-PLS algorithm | 10−5 μg/mL | 10−5–102 μg/mL |
| [85] |
Ascorbate-functionalized Au@AgNPs + RF-PLS algorithm | 2.73 × 10−5 μg/mL | 0.0001–1000 μg/mL |
| [152] | |
Penicillin G | Magnetic Fe3O4@Au@SiO2 core-shell nanostructure | 0.35 ng/mL | <EU MRL (4 μg/kg) |
| [153] |
Capsaicin (Gutter oil marker) | Au nanorods (NRs) + diazo coupling reaction | 3.24 × 10−12 M (≈1 ng/L *) | 10−11–10−4 M |
| [154] |
Tetrodotoxin (TTX) | Fe3O4@Cu catalytic tri-channel biosensor | 0.055 ng/mL (SERS) | – |
| [156] |
Hydroxyl-sanshools (HS) | Homogeneous AuNRs + Dynamic SERS (D-SERS) | 0.03 mg/mL | 0.1–12 mg/mL |
| [157] |
Benzo(b)fluoranthene (BbF) | Flexible paper-based AuNPs + LSTM deep learning | 0.10 ng/mL | – |
| [160] |
Polycyclic Aromatic Hydrocarbons (PAHs) | Ag/graphene hybrid substrate | 0.5 ppb (representative) | – |
| [161] |
Sulfur-containing gases (H2S/SO2) | MOF-5-NH2 assembled Au@Ag dual-probe | H2S: 2.26 nM (≈76 ng/L) | H2S: 5–60 nM |
| [163] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, R.-S.; Dai, J.-Y.; Wang, X.-J.; Chen, M.-Y. Research Progress of Surface-Enhanced Raman Scattering (SERS) Technology in Food, Biomedical, and Environmental Monitoring. Photonics 2025, 12, 809. https://doi.org/10.3390/photonics12080809
Xue R-S, Dai J-Y, Wang X-J, Chen M-Y. Research Progress of Surface-Enhanced Raman Scattering (SERS) Technology in Food, Biomedical, and Environmental Monitoring. Photonics. 2025; 12(8):809. https://doi.org/10.3390/photonics12080809
Chicago/Turabian StyleXue, Rui-Song, Jia-Yi Dai, Xue-Jiao Wang, and Ming-Yang Chen. 2025. "Research Progress of Surface-Enhanced Raman Scattering (SERS) Technology in Food, Biomedical, and Environmental Monitoring" Photonics 12, no. 8: 809. https://doi.org/10.3390/photonics12080809
APA StyleXue, R.-S., Dai, J.-Y., Wang, X.-J., & Chen, M.-Y. (2025). Research Progress of Surface-Enhanced Raman Scattering (SERS) Technology in Food, Biomedical, and Environmental Monitoring. Photonics, 12(8), 809. https://doi.org/10.3390/photonics12080809