Advanced Technologies in Optical Wireless Communications
1. Introduction
2. Visible-Light Communication (VLC)
3. Visible-Light Positioning (VLP)
4. Space Optical Communication
5. Modulation and Multiplexing Techniques
6. Photonic Integrated Circuits (PICs) for OWC
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Contributions
- 1.
- Faruki, M.J.; Bera, K.; Karmakar, N. Impact of crystal orientation on modulation bandwidth: Towards GaN LED-based high-speed visible light communication. Photonics 2024, 11, 542. https://doi.org/10.3390/photonics11060542
- 2.
- Aller, D.G.; Lamar, D.G.; Garcia-Mere, J.R.; Hernando, M.M.; Rodriguez, J.; Sebastian, J. Series/Parallel Boost/Buck DC/DC Converter as a Visible Light Communication HB-LED Driver Based on Split Power. Photonics 2025, 12, 402. https://doi.org/10.3390/photonics12050402
- 3.
- Bera, K.; Karmakar, N. Interference Mitigation in VLC Systems using a Variable Focus Liquid Lens. Photonics 2024, 11, 506. https://doi.org/10.3390/photonics11060506
- 4.
- Zhao, Q.; Zhang, W.; Fan, J.; Deng, L. Design of the Light Source Layout Optimization Strategy Based on Region Partition and Pre-Bias Compensation for Indoor Visible Light Communication Systems. Photonics 2023, 10, 1344. https://doi.org/10.3390/photonics10121344
- 5.
- Yin, Y.; Tang, P.; Zhang, J.; Hu, Z.; Jiang, T.; Xia, L.; Liu, G. Channel Characterization and Comparison in Industrial Scenario from Sub-6 GHz to Visible Light Bands for 6G. Photonics 2025, 12, 257. https://doi.org/10.3390/photonics12030257
- 6.
- Wang, R.; Sun, Y.; Liu, Z.; Gao, M.; You, X. Integrated Mobile Visible Light Communication and Positioning Systems Based on Decision Feedback Channel Estimation. Photonics 2024, 11, 537. https://doi.org/10.3390/photonics11060537
- 7.
- Xie, D.; Liu, Z.; Yu, C. Single-source VLCP system based on solar cell array receiver and right-angled tetrahedron trilateration VLP (RATT-VLP) algorithm. Photonics 2024, 11, 536. https://doi.org/10.3390/photonics11060536
- 8.
- Menendez, J.M.; Steendam, H. Optimisation of the Transmitter Layout in a VLP System Using an Aperture-Based Receiver. Photonics 2024, 11, 517. https://doi.org/10.3390/photonics11060517
- 9.
- Guo, W.; Wu, X.; Yang, L. Avalanche Photodiode-Based Deep Space Optical Uplink Communication in the Presence of Channel Impairments. Photonics 2025, 12, 562. https://doi.org/10.3390/photonics12060562
- 10.
- Gao, Y.; Jing, Q.W.; Liu, M.F.; Zong, W.H.; Hong, Y.Q. Deep Learning-Assisted High-Pass-Filter-Based Fixed-Threshold Decision for Free-Space Optical Communications. Photonics 2024, 11, 599. https://doi.org/10.3390/photonics11070599
- 11.
- Gioulis, M.; Kamalakis, T.; Alexandropoulos, D. Comprehensive Optical Inter-Satellite Communication Model for Low Earth Orbit Constellations: Analyzing Transmission Power Requirements. Photonics 2025, 12, 392. https://doi.org/10.3390/photonics12040392
- 12.
- Cao, M.; Yang, Q.; Zhou, G.; Zhang, Y.; Zhang, X.; Wang, H. A Hybrid Network Integrating MHSA and 1D CNN–Bi-LSTM for Interference Mitigation in Faster-than-Nyquist MIMO Optical Wireless Communications. Photonics 2024, 11, 982. https://doi.org/10.3390/photonics11100982
- 13.
- Liu, R.; Wang, Z.; Wang, X.; Lu, J.; Wang, Y.; Zhuo, Y.; Wu, R.; Wei, Z.; Liu, H. Performance Analysis of Soft Switching FSO/THz-RF Dual-Hop AF-NOMA Link Based on Cognitive Radio. Photonics 2023, 10, 1086. https://doi.org/10.3390/photonics10101086
- 14.
- Gao, Y.; Lian, J. Tolerance-Aided Interference Degradation for Optical OFDM in Power-Constrained Systems. Photonics 2023, 10, 1206. https://doi.org/10.3390/photonics10111206
- 15.
- Komuro, N.; Habuchi, H. Design and Analysis of Enhanced IM/DD System with Nonorthogonal Code Shift Keying and Parallel Transmission. Photonics 2025, 12, 166. https://doi.org/10.3390/photonics12020166
- 16.
- Qian, T.; Schuler, B.; Gupta, Y.D.; Deumer, M.; Andrianopoulos, E.; Lyras, N.K.; Kresse, M.; Weigel, M.; Reck, J.; Mihov, K.; et al. Hybrid Photonic Integrated Circuits for Wireless Transceivers. Photonics 2025, 12, 371. https://doi.org/10.3390/photonics12040371
References
- Chi, N.; Zhou, Y.; Wei, Y.; Hu, F. Visible light communication in 6G: Advances, challenges, and prospects. IEEE Veh. Technol. Mag. 2020, 15, 93–102. [Google Scholar] [CrossRef]
- Haas, H.; Yin, L.; Wang, Y.; Chen, C. What is lifi? J. Light. Technol. 2015, 34, 1533–1544. [Google Scholar] [CrossRef]
- Armstrong, J.; Sekercioglu, Y.A.; Neild, A. Visible light positioning: A roadmap for international standardization. IEEE Commun. Mag. 2013, 51, 68–73. [Google Scholar] [CrossRef]
- Zeng, Z.; Fu, S.; Zhang, H.; Dong, Y.; Cheng, J. A survey of underwater optical wireless communications. IEEE Commun. Surv. Tutorials 2016, 19, 204–238. [Google Scholar] [CrossRef]
- Kaushal, H.; Kaddoum, G. Optical communication in space: Challenges and mitigation techniques. IEEE Commun. Surv. Tutorials 2016, 19, 57–96. [Google Scholar] [CrossRef]
- He, C.; Chen, C. A review of advanced transceiver technologies in visible light communications. Photonics 2023, 10, 648. [Google Scholar] [CrossRef]
- Wang, T.Q.; He, C.; Armstrong, J. Performance analysis of aperture-based receivers for MIMO IM/DD visible light communications. J. Light. Technol. 2016, 35, 1513–1523. [Google Scholar] [CrossRef]
- Steendam, H.; Wang, T.Q.; Armstrong, J. Theoretical lower bound for indoor visible light positioning using received signal strength measurements and an aperture-based receiver. J. Light. Technol. 2016, 35, 309–319. [Google Scholar] [CrossRef]
- Menéndez, J.M.; Steendam, H. On the optimisation of illumination LEDs for VLP systems. Photonics 2022, 9, 750. [Google Scholar] [CrossRef]
- Toyoshima, M. Trends in satellite communications and the role of optical free-space communications. J. Opt. Netw. 2005, 4, 300–311. [Google Scholar] [CrossRef]
- Shi, J.; Niu, W.; Ha, Y.; Xu, Z.; Li, Z.; Yu, S.; Chi, N. AI-enabled intelligent visible light communications: Challenges, progress, and future. Photonics 2022, 9, 529. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, L.; Huang, X.; Shi, J.; Chi, N. 8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer. IEEE Photonics J. 2015, 7, 7904507. [Google Scholar]
- Chvojka, P.; Burton, A.; Pesek, P.; Li, X.; Ghassemlooy, Z.; Zvanovec, S.; Anthony Haigh, P. Visible light communications: Increasing data rates with polarization division multiplexing. Opt. Lett. 2020, 45, 2977–2980. [Google Scholar] [CrossRef] [PubMed]
- Trichili, A.; Park, K.H.; Zghal, M.; Ooi, B.S.; Alouini, M.S. Communicating using spatial mode multiplexing: Potentials, challenges, and perspectives. IEEE Commun. Surv. Tutorials 2019, 21, 3175–3203. [Google Scholar] [CrossRef]
- Zeng, L.; O’Brien, D.C.; Le Minh, H.; Faulkner, G.E.; Lee, K.; Jung, D.; Oh, Y.; Won, E.T. High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting. IEEE J. Sel. Areas Commun. 2009, 27, 1654–1662. [Google Scholar] [CrossRef]
- He, C.; Wang, T.Q.; Armstrong, J. Performance of optical receivers using photodetectors with different fields of view in a MIMO ACO-OFDM system. J. Light. Technol. 2015, 33, 4957–4967. [Google Scholar] [CrossRef]
- Chen, C.; Zhong, W.D.; Yang, H.; Du, P. On the performance of MIMO-NOMA-based visible light communication systems. IEEE Photonics Technol. Lett. 2017, 30, 307–310. [Google Scholar] [CrossRef]
- Armstrong, J. OFDM for optical communications. J. Light. Technol. 2009, 27, 189–204. [Google Scholar] [CrossRef]
- He, C.; Armstrong, J. Clipping noise mitigation in optical OFDM systems. IEEE Commun. Lett. 2016, 21, 548–551. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, C.; Chen, C. Advanced Technologies in Optical Wireless Communications. Photonics 2025, 12, 759. https://doi.org/10.3390/photonics12080759
He C, Chen C. Advanced Technologies in Optical Wireless Communications. Photonics. 2025; 12(8):759. https://doi.org/10.3390/photonics12080759
Chicago/Turabian StyleHe, Cuiwei, and Chen Chen. 2025. "Advanced Technologies in Optical Wireless Communications" Photonics 12, no. 8: 759. https://doi.org/10.3390/photonics12080759
APA StyleHe, C., & Chen, C. (2025). Advanced Technologies in Optical Wireless Communications. Photonics, 12(8), 759. https://doi.org/10.3390/photonics12080759