Avalanche Photodiode-Based Deep Space Optical Uplink Communication in the Presence of Channel Impairments
Abstract
:1. Introduction
- We study the combined effects of critical channel impairments in deep space optical uplink systems, including atmospheric and coronal turbulence, pointing errors, AOA fluctuations, link attenuation, and background noise. A closed-form analytical uplink channel model integrating these factors is derived, and its accuracy is rigorously validated through Monte Carlo simulations.
- We use Webb and Gaussian distributions to approximate APD output. For both models, theoretical expressions of PPM communication SER performance are derived. A comparative analysis is performed for the Webb and Gaussian models’ evaluated SER performance.
- We discuss various numerical results, including characteristics of channel destructive factors, Webb and Gaussian modeled APD output and SER performance. While the Gaussian model exhibits inherent limitations in capturing the dynamics of avalanche noise, its operational constraints are analyzed. The results reveal non-monotonic dependencies of SER on the APD gain and FOV angle. Hence, these parameters are strategically optimized to improve the performance of our considered system.
2. Optical Uplink Channel Model
2.1. Statistical Properties of Channel Fading Factors
2.1.1. Atmospheric and Coronal Turbulence-Induced Beam Scintillation
2.1.2. Pointing Errors and AOA Fluctuations
2.1.3. Link Attenuation
2.1.4. Background Noise
2.2. Closed-Form Expression for the Channel Model
3. APD Output Models
3.1. APD Detection Process and Noise Model
3.2. Webb and Gaussian-Approximated APD Output Model
4. PPM SER Performance Analysis
5. Numerical Results and Discussion
5.1. Results of the Channel Model
5.2. Results of the Webb and Gaussian Modeled SER
5.3. Parameters Design
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
APD | Avalanche photodiode |
SER | Symbol error rate |
FOV | Field of view |
AOA | Angle-of-arrival |
SWaP-C | Size, weight, power, and cost |
PPM | Pulse position modulation |
OOK | On-off keying |
Probability density function | |
CDF | Cumulative distribution function |
SNR | Signal-to-noise ratio |
SSNR | Signal-to-shot noise ratio |
Appendix A
Appendix A.1
Parameter | Symbol | Value |
---|---|---|
Ground station altitude | 0.1 km | |
Wave number | ||
Zenith angle | ||
Satellite height | km | |
Classical electron radius | m | |
Relative solar wind density fluctuations ratio | 0.2 | |
Radius of the Sun | km | |
Coronal turbulence outer scale | km | |
Distance between the Sun and the Earth | km |
Appendix A.2
Appendix A.3
References
- Biswas, A.; Srinivasan, M.; Piazzolla, S.; Hoppe, D. Deep space optical communications. In Proceedings of the Free-Space Laser Communication and Atmospheric Propagation XXX, San Francisco, CA, USA, 29–30 January 2018; SPIE: Bellingham, WA, USA, 2018; Volume 10524, p. 105240U. [Google Scholar] [CrossRef]
- Boroson, D.M.; Robinson, B.S.; Murphy, D.V.; Burianek, D.A.; Khatri, F.; Kovalik, J.M.; Sodnik, Z.; Cornwell, D.M. Overview and results of the Lunar Laser Communication Demonstration. In Proceedings of the Free-Space Laser Communication and Atmospheric Propagation XXVI, San Francisco, CA, USA, 2–4 February 2014; SPIE: Bellingham, WA, USA, 2014; p. 89710S. [Google Scholar] [CrossRef]
- Ivanov, H.; Leitgeb, E.; Freiberger, G. Characterization of poisson channel for deep space FSO based on SNSPD technology by experimental demonstration. In Proceedings of the 11th International Symposium on Communication Systems, Budapest, Hungary, 18–20 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Li, B.; Liu, Y.; Tong, S.; Zhang, L.; Yao, H. BER Analysis of a Deep Space Optical Communication System Based on SNSPD Over Double Generalized Gamma Channel. IEEE Photon. J. 2018, 10, 7907607. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiao, J.; Zhang, K.; Wang, Y.; Lu, R.; Zhang, Q. Synodic Period Channel Modeling and Coding Scheme for Deep Space Optical Communications. IEEE Trans. Aerosp. Electron. Syst. 2024, 60, 2364–2378. [Google Scholar] [CrossRef]
- Kudielka, K.; Fischer, E.; Berkefeld, T.; Fischer, C. Optical feeder link demonstrations between the ESA Optical Ground Station and Alphasat. In Proceedings of the 2023 IEEE International Conference on Space Optical Systems and Applications (ICSOS), Vancouver, BC, Canada, 11–13 October 2023; IEEE: Piscataway, NJ, USA, 2024; pp. 64–68. [Google Scholar] [CrossRef]
- Kaushal, H.; Kaddoum, G. Optical Communication in Space: Challenges and Mitigation Techniques. IEEE Commun. Surv. Tutor. 2017, 19, 57–96. [Google Scholar] [CrossRef]
- Stahl, H.P.; Hopkins, R.C.; Schnell, A.; Smith, D.A.; Jackman, A.; Warfield, K.R. Designing astrophysics missions for NASA’s Space Launch System. J. Astron. Telesc. Instruments, Syst. 2016, 2, 041213. [Google Scholar] [CrossRef]
- Xu, G.; Zeng, M. Solar Scintillation Effect for Optical Waves Propagating Through Gamma–Gamma Coronal Turbulence Channels. IEEE Photon. J. 2019, 11, 1–15. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, Q. Mixed RF/FSO Deep Space Communication System Under Solar Scintillation Effect. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 3237–3251. [Google Scholar] [CrossRef]
- Xu, G.; Song, Z. Effects of Solar Scintillation on Deep Space Communications: Challenges and Prediction Techniques. IEEE Wirel. Commun. 2019, 26, 10–16. [Google Scholar] [CrossRef]
- Hennes, H.; Otakar, W. An Introduction to Free-space Optical Communications. Radioengineering 2010, 19, 203–212. [Google Scholar] [CrossRef]
- Lee, E.J.; Chan, V.W. Part 1: Optical communication over the clear turbulent atmospheric channel using diversity. IEEE J. Sel. Areas Commun. 2004, 22, 1896–1906. [Google Scholar] [CrossRef]
- Sandalidis, H. Performance Analysis of a Laser Ground-Station-to-Satellite Link With Modulated Gamma-Distributed Irradiance Fluctuations. J. Opt. Commun. Netw. 2010, 2, 938–943. [Google Scholar] [CrossRef]
- Mishra, N.; Kumar, D.S. Outage analysis of relay assisted FSO systems over K-distribution turbulence channel. In Proceedings of the 2016 ICEEOT, Chennai, India, 3–5 March 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 2965–2967. [Google Scholar] [CrossRef]
- Barrios, R.; Dios, F. Exponentiated Weibull model for the irradiance probability density function of a laser beam propagating through atmospheric turbulence. Opt. Laser Technol. 2013, 45, 13–20. [Google Scholar] [CrossRef]
- Badarneh, O.S.; Mesleh, R. Diversity analysis of simultaneous mmWave and free-space-optical transmission over F-distribution channel models. J. Opt. Commun. Netw. 2020, 12, 324–334. [Google Scholar] [CrossRef]
- Shen, B.; Chen, J.; Xu, G.; Chen, Q.; Wang, J. Performance Analysis of a Drone-Assisted FSO Communication System over Málaga Turbulence under AOA Fluctuations. Drones 2023, 7, 374. [Google Scholar] [CrossRef]
- Donmez, B.; Azam, I.; Kurt, G.K. Mitigation of Misalignment Errors Over Inter-Satellite FSO Energy Harvesting: (Invited Paper). In Proceedings of the PIMRC, Toronto, ON, Canada, 5–8 September 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Mao, B.; Zhou, X.; Liu, J.; Kato, N. On an Intelligent Hierarchical Routing Strategy for Ultra-Dense Free Space Optical Low Earth Orbit Satellite Networks. IEEE J. Sel. Areas Commun. 2024, 42, 1219–1230. [Google Scholar] [CrossRef]
- Ninos, M.P.; Spirito, V.; Cossu, G.; Ciaramella, E. Outage Performance of Uplink Pre-Amplified FSO Links Over Turbulence, Beam Wander, and Pointing Errors. IEEE Commun. Lett. 2023, 27, 3275–3279. [Google Scholar] [CrossRef]
- Safi, H.; Dargahi, A.; Cheng, J.; Safari, M. Analytical Channel Model and Link Design Optimization for Ground-to-HAP Free-Space Optical Communications. J. Light. Technol. 2020, 38, 5036–5047. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, N.; Xu, M.; Xu, Z.; Zhang, Q.; Song, Z. Outage Probability and Average BER of UAV-Assisted Dual-Hop FSO Communication With Amplify-and-Forward Relaying. IEEE Trans. Veh. Technol. 2023, 72, 8287–8302. [Google Scholar] [CrossRef]
- Al-Gailani, S.A.; Mohd Salleh, M.F.; Salem, A.A.; Shaddad, R.Q.; Sheikh, U.U.; Algeelani, N.A.; Almohamad, T.A. A Survey of Free Space Optics (FSO) Communication Systems, Links, and Networks. IEEE Access 2021, 9, 7353–7373. [Google Scholar] [CrossRef]
- Al Naboulsi, M.; Sizun, H.; de Fornel, F. Fog attenuation prediction for optical and infrared waves. Opt. Eng. 2004, 43, 319–329. [Google Scholar] [CrossRef]
- Guo, W.; Zhan, Y.; Tsiftsis, T.A.; Yang, L. Performance and Channel Modeling Optimization for Hovering UAV-Assisted FSO Links. J. Light. Technol. 2022, 40, 4999–5012. [Google Scholar] [CrossRef]
- Farrell, T.C. Sources of background light on space based laser communications links. In Proceedings of the Sensors and Systems for Space Applications XI, Anaheim, CA, USA, 10–11 April 2017; SPIE: Bellingham, WA, USA, 2018; Volume 10641, pp. 175–191. [Google Scholar] [CrossRef]
- Xu, G. BER and channel capacity of a deep space FSO communication system using L-PPM-MSK-SIM scheme during superior solar conjunction. Opt. Express 2019, 27, 24610–24623. [Google Scholar] [CrossRef]
- Gagliardi, R.M.; Karp, S. Optical Communications; Wiley Interscience: Hoboken, NJ, USA, 1976. [Google Scholar]
- Xu, F.; Khalighi, M.A.; Bourennane, S. Impact of different noise sources on the performance of PIN-and APD-based FSO receivers. In Proceedings of the IEEE 11th ICTCE, Paphos, Cyprus, 31 August–2 September 2011; IEEE: Piscataway, NJ, USA, 2023; pp. 211–218. [Google Scholar]
- Sarbazi, E.; Safari, M.; Haas, H. The Bit Error Performance and Information Transfer Rate of SPAD Array Optical Receivers. IEEE T. Commmun. 2020, 68, 5689–5705. [Google Scholar] [CrossRef]
- Miki, S.; Miyajima, S.; China, F.; Yabuno, M.; Terai, H. Photon detection at 1 ns time intervals using 16-element SNSPD array with SFQ multiplexer. Opt. Lett. 2021, 46, 6015–6018. [Google Scholar] [CrossRef]
- Webb, P.P.; Mcintyre, R.J.; Conradi, J. Properties of Avalanche Photodiodes. RCA Rev. 1974, 35, 234–278. [Google Scholar]
- Davidson, F.M.; Sun, X. Gaussian approximation versus nearly exact performance analysis of optical communication systems with PPM signaling and APD receivers. IEEE T. Commun. 1988, 36, 1185–1192. [Google Scholar] [CrossRef]
- Srinivasan, M.; Vilnrotter, V. Symbol-error probabilities for pulse-position modulation signaling with an avalanche photodiode receiver and Gaussian thermal noise. In The Telecommunications and Mission Operations Progress Report; TMO-PR: Pasadena, CA, USA, 1998; pp. 1–11. [Google Scholar]
- Cvijetic, N.; Wilson, S.G.; Brandt Pearce, M. Performance Bounds for Free-Space Optical MIMO Systems with APD Receivers in Atmospheric Turbulence. IEEE J. Sel. Areas Commun. 2008, 26, 3–12. [Google Scholar] [CrossRef]
- Dabiri, M.T.; Sadough, S.M.S.; Khalighi, M.A. FSO channel estimation for OOK modulation with APD receiver over atmospheric turbulence and pointing errors. Opt. Commun. 2017, 402, 577–584. [Google Scholar] [CrossRef]
- Amico, A.A.; Morelli, M. Joint Frame Detection and Channel Parameter Estimation for OOK Free-Space Optical Communications. IEEE Trans. Commun. 2022, 70, 4731–4744. [Google Scholar] [CrossRef]
- Ivanov, H.; Hatab, Z.; Leitgeb, E. Channel Emulation of Satellite-to-Ground APD-based FSO Link in the Presence of Atmospheric Turbulence Fading. In Proceedings of the 2021 16th International Conference on Telecommunications (ConTEL), Zagreb, Croatia, 30 June–2 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 33–36. [Google Scholar] [CrossRef]
- Yu, X.; Xiao, L.; Gao, S.; Song, Y.; Zhang, L.; Yao, H.; Wang, T.; Chen, X.; Jin, Z.; Zhou, C.; et al. Atmospheric Turbulence Suppression Algorithm Based on APD Adaptive Gain Control for FSO Links of 5G Floating Base Stations. IEEE Photonics J. 2020, 12, 7904011. [Google Scholar] [CrossRef]
- Kaur, S. Analysis of inter-satellite free-space optical link performance considering different system parameters. Opto-Electron. Rev. 2019, 27, 10–13. [Google Scholar] [CrossRef]
- Kiasaleh, K. Performance of APD-based PPM free-space optical communication systems in atmospheric turbulence. IEEE Trans. Commun. 2005, 53, 1455–1461. [Google Scholar] [CrossRef]
- Liang, J.; Chaudhry, A.U.; Erdogan, E.; Yanikomeroglu, H.; Kurt, G.K.; Hu, P.; Ahmed, K.; Martel, S. Free-Space Optical (FSO) Satellite Networks Performance Analysis: Transmission Power, Latency, and Outage Probability. IEEE Open J. Veh. Technol. 2024, 5, 244–261. [Google Scholar] [CrossRef]
- Ata, Y.; Alouini, M.S. Performance of Integrated Ground-Air-Space FSO Links Over Various Turbulent Environments. IEEE Photonics J. 2022, 14, 7358916. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Xu, G.; Song, Z. Amplitude fluctuations for optical waves propagation through non-Kolmogorov coronal solar wind turbulence channels. Opt. Express 2018, 26, 8566–8580. [Google Scholar] [CrossRef] [PubMed]
- Wolfram. The Wolfram Functions Site. 2021. Available online: https://functions.wolfram.com/PDF/MeijerG.pdf (accessed on 23 May 2025).
- McIntyre, R.J. The distribution of gains in uniformly multiplying avalanche photodiodes: Theory. IEEE Trans. Electron Devices 1972, 19, 703–713. [Google Scholar] [CrossRef]
- Dolinar, D.S.; Divsalar, J.H.; Pollara, F. Capacity of Pulse-Position Modulation (PPM) on Gaussian and Webb Channels; Technical Report JPL-TMO-PR-42-142; TMO-PR: Pasadena, CA, USA, 2000. [Google Scholar]
- Andrews, L.C.; Phillips, R.L. Laser Beam Propagation Through Random Media, 2nd ed.; SPIE Press: Bellingham, WA, USA, 2005. [Google Scholar] [CrossRef]
Parameter | Symbol | Value |
---|---|---|
Optical wavelength | 1550 nm | |
PPM symbol size | Q | 16 |
Slot width | s | |
Optical filter bandwidth | Hz | |
APD quantum efficiency | ||
APD Bandwidth | Hz | |
Dark current | A | |
Load resistance | ||
Ionization ratio | ||
Field of view | 150 rad | |
Spectral albedo of the Earth | 0.25 | |
Optical receiving aperture diameter | m | |
Background radiation spectral radiance | W/Hz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, W.; Wu, X.; Yang, L. Avalanche Photodiode-Based Deep Space Optical Uplink Communication in the Presence of Channel Impairments. Photonics 2025, 12, 562. https://doi.org/10.3390/photonics12060562
Guo W, Wu X, Yang L. Avalanche Photodiode-Based Deep Space Optical Uplink Communication in the Presence of Channel Impairments. Photonics. 2025; 12(6):562. https://doi.org/10.3390/photonics12060562
Chicago/Turabian StyleGuo, Wenjng, Xiaowei Wu, and Lei Yang. 2025. "Avalanche Photodiode-Based Deep Space Optical Uplink Communication in the Presence of Channel Impairments" Photonics 12, no. 6: 562. https://doi.org/10.3390/photonics12060562
APA StyleGuo, W., Wu, X., & Yang, L. (2025). Avalanche Photodiode-Based Deep Space Optical Uplink Communication in the Presence of Channel Impairments. Photonics, 12(6), 562. https://doi.org/10.3390/photonics12060562