Diode-End-Pumped Continuous-Wave Tunable Nd3+:LiYF4 Laser Operating on the 4F3/2→4I13/2 Transition
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jaque, D.; Capmany, J.; Solé, J. Red, green, and, blue laser light from a single Nd:YAl3(BO3)4 crystal based on laser oscillation at 1.3 μm. Appl. Phys. Lett. 1999, 75, 325–327. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, K.; He, L.; Yang, J.; Zong, N.; Yang, F.; Gao, H.; Liu, Z.; Yuan, L.; Lan, Y. 10 kHz ps 1342 nm laser generation by an electro-optically cavity-dumped modelocked Nd:YVO4 laser. Opt. Laser Technol. 2017, 87, 26–30. [Google Scholar] [CrossRef]
- Xu, B.; Wang, Y.; Lin, Z.; Peng, J.; Cheng, Y.; Luo, Z.; Xu, H.; Cai, Z.; Weng, J.; Moncorge, R. Single- and multi-wavelength Nd:YALO3 lasers at 1328, 1339 and 1364 nm. Opt. Laser Technol. 2016, 81, 1–6. [Google Scholar] [CrossRef]
- Cong, H.; Xue, C.; Zheng, J.; Yang, F.; Yu, K.; Liu, Z.; Zhang, X.; Cheng, B.; Wang, Q. Silicon based GeSn p-i-n photodetector for SWIR detection. IEEE Photonics J. 2016, 8, 6804706. [Google Scholar] [CrossRef]
- Zhang, G.; Shen, H.; Zeng, R.; Huang, C.; Lin, W.; Huang, J. The study of 1341.4 nm Nd:YAlO3 laser intracavity frequency-doubling by LiB3O5. Opt. Commun. 2000, 183, 461–466. [Google Scholar] [CrossRef]
- Yue, S.; Cao, S.; Qin, W.; Jiang, M.; Liu, Y.; Cao, Y.; Wang, Z. Generation of 1319 nm Pulsed Vortex Laser by Annular Pumped Bonded Nd:YAG/V:YAG Crystal. Photonics 2025, 12, 303. [Google Scholar] [CrossRef]
- Ma, F.; Wang, S.; Li, B.; Shang, P.; Li, J.; Li, Z. Effect of Lower-Level Relaxation on the Pulse Generation Performance of Q-Switched Nd:YAG Laser. Photonics 2025, 12, 408. [Google Scholar] [CrossRef]
- Lenhardt, F.; Nittmann, M.; Bauer, T.; Bartschke, J.; Lhuillier, J. High-power 888-nm-pumped Nd:YVO4 1342-nm oscillator operating in the TEM00 mode. Appl. Phys. B 2009, 96, 803. [Google Scholar] [CrossRef]
- Li, F.; Liu, K.; Han, L.; Zong, N.; Bo, Y.; Zhang, J.; Peng, Q.; Cui, D.; Xu, Z. High-power 880-nm diode-directly-pumped passively mode-locked Nd:YVO4 laser at 1342 nm with a semiconductor saturable absorber mirror. Opt. Lett. 2011, 36, 1485–1487. [Google Scholar] [CrossRef]
- Jessica, D.; Luciana, R.; Wetter, N. Nd:YVO4 Random Laser with Preferential Emission at 1340 nm over 1064 nm. Photonics 2024, 11, 898. [Google Scholar] [CrossRef]
- Ogilvy, H.; Withford, M.; Dekker, P.; Piper, J. Efficient diode double-end-pumped Nd:YVO4 laser operating at 1342 nm. Opt. Express 2003, 11, 2411–2415. [Google Scholar] [CrossRef] [PubMed]
- Lü, Y.; Xia, J.; Wang, J.; Sun, G.; Zhang, X.; Zhang, A.; Yin, X.; Bao, L.; Quan, H. High-efficiency Nd:GdVO4 laser at 1341nm under 880nm diode laser pumping into the emitting level. Opt. Commun. 2009, 282, 3565–3567. [Google Scholar] [CrossRef]
- Du, C.; Qin, L.; Meng, X.; Xu, G.; Wang, Z.; Xu, X.; Zhu, L.; Xu, B.; Shao, Z. High-power Nd:GdVO4 laser at 1.34 μm end-pumped by laser-diode-array. Opt. Commun. 2002, 212, 177–181. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, J.; Wang, J.; Xu, X.; Jiang, M. Continuous-wave laser performance of Nd:LuVO4 crystal operating at 1.34 µm. Appl. Opt. 2005, 44, 7439–7441. [Google Scholar] [CrossRef]
- Liu, F.; He, J.; Zhang, B.; Xu, J.; Dong, X.; Yang, K.; Xia, H.; Zhang, H. Diode-pumped passively Q-switched Nd:LuVO4 laser at 1.34 μm with a V3+:YAG saturable absorber. Opt. Express 2008, 16, 11759–11763. [Google Scholar] [CrossRef]
- Prado, F.; Franco, T.; Wetter, N. Efficient Trichromatic Nd:YLF Laser Emitting at 1047 nm, 1053 nm and 1314 nm. Photonics 2023, 10, 1146. [Google Scholar] [CrossRef]
- Zhu, H.; Huang, C.; Zhang, G.; Wei, Y.; Huang, L.; Chen, J.; Chen, W.; Chen, Z. High-power CW diode-side-pumped 1341 nm Nd:YAP laser. Opt. Commun. 2007, 270, 296–300. [Google Scholar] [CrossRef]
- Farley, R.; Dao, P. Development of an intracavity-summed multiple-wavelength Nd:YAG laser for a rugged, solid-state sodium lidar system. Appl. Opt. 1995, 34, 4269–4273. [Google Scholar] [CrossRef]
- Son, S.; Song, J.; Kang, J.; Kim, C. Simultaneous second harmonic generation of multiple wavelength laser outputs for medical sensing. Sensors 2011, 11, 6125–6130. [Google Scholar] [CrossRef]
- Weigl, F. A generalized technique of two-wavelength, nondiffuse holographic interferometry. Appl. Opt. 1971, 10, 187–192. [Google Scholar] [CrossRef]
- Abdelsalam, D.; Magnusson, R.; Kim, D. Single-shot, dual-wavelength digital holography based on polarizing separation. Appl. Opt. 2011, 50, 3360–3368. [Google Scholar] [CrossRef] [PubMed]
- Basov, N.; Gubin, M.; Nikitin, V.; Nikuchin, A.; Petrovskii, V.; Protsenko, E.; Tyurikov, D. Highly-sensitive method of narrow spectral-line separations, based on the detection of frequency resonances of a 2-mode gas-laser with non-linear absorption. Izv. Akad. Nauk. SSR Seriya Fiz. 1982, 46, 1573–1583. [Google Scholar]
- Zhang, S.; Tan, Y.; Li, Y. Orthogonally polarized dual frequency lasers and applications in self-sensing metrology. Meas. Sci. Technol. 2010, 21, 054016. [Google Scholar] [CrossRef]
- Huang, H.; Xia, J.; Anh, N.; Li, Y.; Zhang, Y.; Zhang, Q.; Zhao, Z.; Lü, Y. Orthogonally Polarized Dual-Wavelength Pr:LLF Green Laser at 546 nm and 550 nmwith the Balanced Output Powers at All Pump Power Level. Photonics 2025, 12, 393. [Google Scholar] [CrossRef]
- Huang, H.; Xia, J.; Anh, N.; Li, Y.; Lü, Y. Dual-Wavelength Operation at 607 nm and 640 nm with the Same Threshold and Slope Efficiency in Pr3+:LiLuF4 Crystal. Photonics 2025, 12, 447. [Google Scholar] [CrossRef]
- Du, Z.; Hu, Z.; Li, Y.; Anh, N.; Fu, X.; Li, B.; Bai, J. Tunable Yb:GdCOB self-frequency-doubling cyan laser. Laser Phys. Lett. 2024, 21, 025001. [Google Scholar] [CrossRef]
- Zhao, P.; Ragam, S.; Ding, Y.; Zotova, I. Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers. Appl. Phys. Lett. 2011, 98, 131106. [Google Scholar] [CrossRef]
- Huang, H.; Li, Y.; Lü, Y.; Anh, N.; Zhang, Q.; Xia, J. Orthogonally Polarized Green Dual-Wavelength Pr3+:LiLuF4 Laser at 523 and 538 nm with the Power Ratio of 1:1. Photonics 2025, 12, 591. [Google Scholar] [CrossRef]
- Junttila, S.; Vastaranta, M.; Liang, X.; Kaartinen, H.; Kukko, A.; Kaasalainen, S.; Holopainen, M.; Hyyppä, H.; Hyyppä, J. Measuring Leaf Water Content with Dual-Wavelength Intensity Data from Terrestrial Laser Scanners. Remote Sens. 2017, 9, 8. [Google Scholar] [CrossRef]
- Najm, M.; Nizamani, B.; Al-Azzawi, A.; Hmood, J.; Abdullah, M.; Harun, S. Generation of dual-wavelength Q-switched laser pulses by employing Mo2Ti2AlC3 MAX phase film. Opt. Fiber Technol. 2023, 81, 103566. [Google Scholar] [CrossRef]
- Chen, M.; Wang, Z.; Zhang, S.; Yang, F.; Zhang, F.; Yuan, L.; He, M.; Li, J.; Zhang, X.; Zong, N.; et al. 1319 nm and 1356 nm dual-wavelength operation of diode-side-pumped Nd:YAG laser. Opt. Laser Technol. 2016, 79, 52–54. [Google Scholar] [CrossRef]
- Guo, L.; Lan, R.; Liu, H.; Yu, H.; Zhang, H.; Wang, J.; Hu, D.; Zhuang, S.; Chen, L.; Zhao, Y.; et al. 1319 nm and 1338 nm dual-wavelength operation of LD end-pumped Nd:YAG ceramic laser. Opt. Express 2010, 18, 9098–9106. [Google Scholar] [CrossRef]
- Lü, Y.; Xia, J.; Zhang, J.; Fu, X.; Liu, H. Orthogonally polarized dual-wavelength Nd:YAlO3 laser at 1341 and 1339 nm and sum-frequency mixing for an emission at 670 nm. Appl. Opt. 2014, 53, 5141–5146. [Google Scholar] [CrossRef]
- Tu, Z.; Dai, S.; Zhu, S.; Yin, H.; Li, Z.; Ji, E.; Chen, Z. Efficient high-power orthogonally-polarized dual-wavelength Nd:YLF laser at 1314 and 1321 nm. Opt. Express 2019, 27, 32949–32957. [Google Scholar] [CrossRef]
- Li, S.; Li, T.; Zhao, S.; Li, G.; Hang, Y.; Zhang, P. 1.31 and 1.32 μm dual-wavelength Nd:LuLiF4 laser. Opt. Laser Technol. 2016, 81, 14–17. [Google Scholar] [CrossRef]
- Badr, T.; Plimmer, M.; Juncar, P.; Himbert, M. Observation by two-photon laser spectroscopy of the 4d105s2S1/2→4d95s22D5/2 clock transition in atomic silver. Phys. Rev. A 2006, 74, 062509. [Google Scholar] [CrossRef]
- Orringer, J.; Kang, S.; Maier, L.; Johnson, T.; Sachs, D.; Karimipour, D.; Helfrich, Y.; Hamilton, T.; Voorhees, J. A randomized, controlled, split-face clinical trial of 1320-nm Nd:YAG laser therapy in the treatment of acne vulgaris. J. Am. Acad. Dermatol. 2007, 56, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Louyer, Y.; Balembois, F.; Plimmer, M.; Badr, T.; Georges, P.; Juncar, P.; Himbert, M. Efficient cw operation of diode-pumped Nd:YLF lasers at 1312.0 and 1322.6 nm for a silver atom optical clock. Opt. Commun. 2003, 217, 357–362. [Google Scholar] [CrossRef]
- Pollak, T.; Wing, W.; Grasso, R.; Chicklis, E.; Jenssen, H. CW Laser Operation of Nd:YLF. IEEE J. Quantum Electron. 1982, 18, 159–163. [Google Scholar] [CrossRef]
- Xu, S.; Gao, S. A new wavelength laser at 1370 nm generated by Nd:YLF crystal. Mater. Lett. 2016, 183, 451–453. [Google Scholar] [CrossRef]
- Shang, P.; Bai, L.; Wang, S.; Cai, D.; Li, B. Research progress on thermal effect of LD pumped solid state laser. Opt. Laser Technol. 2023, 157, 108640. [Google Scholar] [CrossRef]
- Chuang, T.; Verdún, H. Energy Transfer Up-Conversion and Excited State Absorption of Laser Radiation in Nd:YLF Laser Crystals. IEEE J. Quantum Electron. 1996, 32, 79–91. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Q.; Nie, M.; Ji, E.; Gong, M. Experimental and theoretical study of the weak and asymmetrical thermal lens effect of Nd:YLF crystal for π- and σ-polarizations. Appl. Phys. 2015, 120, 689–696. [Google Scholar] [CrossRef]
- Huber, G.; Krühler, W.; Bludau, W.; Danielmeyer, H. Anisotropy in the laser performance of NdP5O14. J. Appl. Phys. 1975, 46, 3580–3584. [Google Scholar] [CrossRef]
- Wang, X.; Yao, J. Transmitted and tuning characteristics of birefringent filters. Appl. Opt. 1992, 31, 4505–4508. [Google Scholar] [CrossRef]
- Fan, T.; Byer, R. Diode laser-pumped solid-state lasers. IEEE J. Quantum Electron. 1988, 24, 895. [Google Scholar] [CrossRef]
- Chen, Y. cw dual-wavelength operation of a diode-pumped Nd:YVO4 laser. Appl. Phys. B 2000, 70, 475–478. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, C.; Wang, S.; Fu, X.; Du, Z. Diode-End-Pumped Continuous-Wave Tunable Nd3+:LiYF4 Laser Operating on the 4F3/2→4I13/2 Transition. Photonics 2025, 12, 613. https://doi.org/10.3390/photonics12060613
Chu C, Wang S, Fu X, Du Z. Diode-End-Pumped Continuous-Wave Tunable Nd3+:LiYF4 Laser Operating on the 4F3/2→4I13/2 Transition. Photonics. 2025; 12(6):613. https://doi.org/10.3390/photonics12060613
Chicago/Turabian StyleChu, Chu, Shuang Wang, Xinhua Fu, and Zhenhua Du. 2025. "Diode-End-Pumped Continuous-Wave Tunable Nd3+:LiYF4 Laser Operating on the 4F3/2→4I13/2 Transition" Photonics 12, no. 6: 613. https://doi.org/10.3390/photonics12060613
APA StyleChu, C., Wang, S., Fu, X., & Du, Z. (2025). Diode-End-Pumped Continuous-Wave Tunable Nd3+:LiYF4 Laser Operating on the 4F3/2→4I13/2 Transition. Photonics, 12(6), 613. https://doi.org/10.3390/photonics12060613