Passively Mode-Locked Tm:YAP Laser Utilizing a Mo2TiAlC2 MAX Phase Saturable Absorber for Modulation
Abstract
1. Introduction
2. Nonlinear Optical Absorption Properties of the Mo2TiAlC2-Based SA
3. Experimental Setup
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, L.; Ding, Y.; Zhai, X.; Min, H.; Liu, G.; Lan, R.; Shen, Y. Passively Q-switched 2 μm laser based on graphene/BN heterostructure as saturable absorber. Opt. Laser Technol. 2024, 168, 109852. [Google Scholar] [CrossRef]
- Pierpoint, K.A.; Doroshenko, M.E.; Alimov, O.K.; Papashvili, A.G.; Konyushkin, V.A.; Nakladov, A.N.; Nekhoroshikh, A.V. Spectroscopic properties of Ho3+ optical centers in CaF2 crystals at the two-micron laser transition. J. Lumin. 2020, 228, 117584. [Google Scholar] [CrossRef]
- Li, Y.; He, X.; Wen, Z.; Wu, M.; Tang, G.; Song, X.; Qian, Q. Research Progress on 2 μm Germanate Glass Fibers and their laser applications. Ceram. Int. 2024, 51, 16584–16592. [Google Scholar] [CrossRef]
- Tao, W.; Sun, J.; Deng, Y.; Lian, Y.; Chen, Z.; Jiang, L. Au-Doped Black Silicon Photodetector Fabricated by a Femtosecond Laser with Excellent Near-Infrared Response. ACS Appl. Mater. Interfaces 2024, 16, 65710–65724. [Google Scholar] [CrossRef]
- Qiao, S.; He, Y.; Sun, H.; Patimisco, P.; Sampaolo, A.; Spagnolo, V.; Ma, Y. Ultra-highly sensitive dual gases detection based on photoacoustic spectroscopy by exploiting a long-wave, high-power, wide-tunable, single-longitudinal-mode solid-state laser. Light Sci. Appl. 2024, 13, 100. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Hu, B.; Zhang, K.; Zhang, X.; Chen, Y.; Yao, H.; Zhao, G. High-SNR, high-repetition-rate, compact, picosecond, mid-infrared optical parametric oscillator pumped synchronously by a harmonic mode-locked fiber laser. Opt. Lett. 2025, 50, 1228–1231. [Google Scholar] [CrossRef]
- Guo, L.; Yang, Y.; Zhao, S.; Li, T.; Qiao, W.; Ma, B.; He, J. Room temperature watt-level 3.87 µm MgO: PPLN optical parametric oscillator under pumping with a Tm: YAP laser. Opt. Express 2020, 28, 32916–32924. [Google Scholar] [CrossRef]
- Yun, L.; Ding, C.; Ding, Y.; Han, D.; Zhang, J.; Cui, H.; Yu, K. High-power mode-locked fiber laser using lead sulfide quantum dots saturable absorber. J. Light. Technol. 2022, 40, 7901–7906. [Google Scholar] [CrossRef]
- Fan, W.; Han, Y.; Chen, S.; Sun, S.; Zhao, X.; Bai, C.; Zhang, H. Nanosized indium selenide saturable absorber for multiple solitons operation in Er3+-doped fiber laser. Opt. Express 2023, 31, 10176–10190. [Google Scholar] [CrossRef]
- Li, L.; Cheng, J.; Zhao, Q.; Zhang, J.; Yang, H.; Zhang, Y.; Liu, W. Chromium oxide film for Q-switched and mode-locked pulse generation. Opt. Express 2023, 31, 16872–16881. [Google Scholar] [CrossRef]
- Yap, Y.; Chong, W.; Razgaleh, S.A.; Huang, N.; Ong, C.; Ahmad, H. Performance of Q-switched fiber laser using optically deposited reduced graphene oxide as saturable absorber. Fiber Integr. Opt. 2022, 41, 26–40. [Google Scholar] [CrossRef]
- Ooi, S.I.; Ahmad, H. Thermal release tape assisted mechanical exfoliation of pristine TMD and the performance of the exfoliated TMD saturable absorbers for Q-switched laser generation. Optic. Mater. 2022, 128, 112363. [Google Scholar] [CrossRef]
- Alghamdi, T.A.; Harun, S.W. Black phosphorus film as Q-switcher in neodymium-doped fiber laser. Heliyon 2024, 10, e37776. [Google Scholar] [CrossRef] [PubMed]
- Mohamad Rashid, N.N.; Ahmad, H.; Ismail, M.F.; Lokman, M.Q.; Zuikafly, S.N.F.; Yahaya, H.; Ahmad, F. Nanotubes in Chitin Mode Locker for Passive Mode−Locked Fibre Laser in 2.0 µm Region. Photonics 2023, 3, 257. [Google Scholar] [CrossRef]
- Liu, J.; Yang, F.; Lu, J.; Ye, S.; Guo, H.; Nie, H.; Ni, Z. High output mode-locked laser empowered by defect regulation in 2D Bi2O2Se saturable absorber. Nat. Commun. 2022, 13, 3855. [Google Scholar] [CrossRef]
- Mu, H.; Liu, Y.; Bongu, S.R.; Bao, X.; Li, L.; Xiao, S.; Bao, Q. Germanium nanosheets with dirac characteristics as a saturable absorber for ultrafast pulse generation. Adv. Mater. 2021, 33, 2101042. [Google Scholar] [CrossRef]
- Yu, J.; Kuang, X.; Li, J.; Zhong, J.; Zeng, C.; Cao, L.; Liu, Y. Giant nonlinear optical activity in two-dimensional palladium diselenide. Nat. Commun. 2021, 12, 1083. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Smith, C.R.; Petersen, C.R. All-Fiber 2 µm Mamyshev Oscillator: Mapping of Different Operating Regimes. Laser Photonics Rev. 2025, 2500074. [Google Scholar] [CrossRef]
- Shi, Z.; Sun, S.; Wang, Q. Ultrafast soliton dynamics from an all-fiber self-starting thulium-doped Mamyshev oscillator. Opt. Lett. 2025, 50, 1025–1028. [Google Scholar] [CrossRef]
- Sarycheva, A.; Gogotsi, Y. Raman Spectroscopy Analysis of the Structure and Surface Chemistry of Ti3C2Tx MXene; Jenny Stanford Publishing: Singapore, 2023; pp. 333–355. [Google Scholar] [CrossRef]
- Alhabeb, M.; Maleski, K.; Mathis, T.S.; Sarycheva, A.; Hatter, C.B.; Uzun, S.; Gogotsi, Y. Selective Etching of Silicon from Ti3SiC2 (MAX) to Obtain 2D Titanium Carbide (MXene); Jenny Stanford Publishing: Singapore, 2023; pp. 451–462. [Google Scholar] [CrossRef]
- Nemani, S.K.; Zhang, B.; Wyatt, B.C.; Hood, Z.D.; Manna, S.; Khaledialidusti, R.; Anasori, B. High-entropy 2D carbide mxenes: TiVNbMoC3 and TiVCrMoC3. ACS Nano 2021, 15, 12815–12825. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, G.; Zhang, W.; Li, Y.; Li, B.; Wang, B. Microstructure and mechanical properties of Mo-12Si-8.5 B alloy reinforced by layered Mo2TiAlC2 MAX phase. Int. J. Refract. Met. Hard Mater. 2022, 109, 105967. [Google Scholar] [CrossRef]
- Ouadha, I.; Rached, H.; Azzouz-Rached, A.; Reggad, A.; Rached, D. Study of the structural, mechanical and thermodynamic properties of the new MAX phase compounds (Zr1-xTix)3AlC2. Comput. Condens. Matter. 2020, 23, e00468. [Google Scholar] [CrossRef]
- Hui, X.; Ge, X.; Zhao, R.; Li, Z.; Yin, L. Interface chemistry on MXene-based materials for enhanced energy storage and conversion performance. Adv. Funct. Mater. 2020, 30, 2005190. [Google Scholar] [CrossRef]
- Sokol, M.; ElMeligy, T.A.; Plummer, G.; Tucker, G.J.; Barsoum, M.W. Tensile creep of textured Ti2AlC in the 1000–1150° C temperature range. Acta Mater. 2023, 261, 119350. [Google Scholar] [CrossRef]
- Ahmad, H.; Makhfuz, M.J.M.; Yusoff, N.; Sadafi, N.; Samion, M.Z.; Yasin, M. Mode-locked operation in thulium-holmium doped fiber laser based on Cr2AlC MAX phase SA coated arc-shaped fiber. Opt. Quantum Electron. 2023, 55, 228. [Google Scholar] [CrossRef]
- Ahmad, H.; Kahar, N.A.; Ramli, R.; Yusoff, N.; Reduan, S.A.; Ismail, M.F.; Yasin, M. The performance of Ti2C MXene and Ti2AlC MAX Phase as saturable absorbers for passively mode-locked fiber laser. Opt. Fiber Technol. 2021, 67, 102683. [Google Scholar] [CrossRef]
- Sun, Y.J.; Lee, C.K.; Xu, J.L.; Zhu, Z.J.; Wang, Y.Q.; Gao, S.F.; Tu, C.Y. Passively Q-switched tri-wavelength Yb3+: GdAl3(BO3)4 solid-state laser with topological insulator Bi2Te3 as saturable absorber. Photonics Res. 2015, 3, A97–A101. [Google Scholar] [CrossRef]
- Zaini, M.A.Z.; Rahman, M.F.A.; Latiff, A.A.; Rusdi, M.F.M.; Roslan, I.A.Z.; Harun, S.W. Passive Q-switched pulse fibre laser with molybdenum titanium aluminum carbide (Mo2TiAlC2) saturable absorber. J. Mod. Opt. 2023, 70, 661–672. [Google Scholar] [CrossRef]
- Najm, M.M.; Al-Hiti, A.S.; Nizamani, B.; Abdullah, M.N.; Rosol, A.H.A.; Zhang, P.; Harun, S.W. Effect of MAX phase chromium aluminum carbide thin film thickness on Q-switched Erbium-doped fiber lasers. Opt. Fiber Technol. 2022, 70, 102853. [Google Scholar] [CrossRef]
- Qi, T.; Wu, H.; Li, M.; Hou, X.; Shen, Y.; Duan, X.; Yang, Y. Operation of a passively mode-locked Tm: YAG laser with tantalum aluminum carbide as a saturable absorber. Microw. Opt. Technol. Lett. 2024, 66, e33776. [Google Scholar] [CrossRef]
- Safuan, N.Z.M.; Rosol, A.H.A.; Zulkipli, N.; Yasin, M.; Harun, S.W. Generation of Picosecond Pulses in Erbium-Doped Fiber Lasers Via Mode Locking Using V4AlC3 Thin Film. J. Russ. Laser Res. 2023, 44, 384–391. [Google Scholar] [CrossRef]
- Yang, J.; Zou, H.; Chen, J.; Wen, Y.; Fan, Y.; Liu, Y.; Li, X. Reactive synthesis of porous Mo2Ti2AlC3 ceramic and its basic application properties. Ceram. Int. 2022, 48, 9205–9217. [Google Scholar] [CrossRef]
- Wang, C.; Chen, T.; Meng, Z.; Niu, S.; Li, Z.; Yang, X. Mo2TiAlC2 as a Saturable Absorber for a Passively Q-Switched Tm: YAlO3 Laser. Nanomaterials 2024, 14, 1823. [Google Scholar] [CrossRef]
- Zhang, K.; Feng, M.; Xie, J.; Sang, X.; Sun, G.; Tian, Y.; Huang, W. High-energy Q switched Yb-doped fiber laser based on a ternary layered structured Ti2AlC saturable absorber. Opt. Lett. 2022, 47, 5525–5528. [Google Scholar] [CrossRef]
- Zhang, Q.; Jiang, X.; Zhang, M.; Jin, X.; Zhang, H.; Zheng, Z. Wideband saturable absorption in metal-organic frameworks (MOFs) for mode-locking Er-and Tm-doped fiber lasers. Nanoscale 2020, 12, 4586–4590. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Hao, Q.; Wang, H.; Gao, Q.; Mi, S.; Li, D.; Xu, B. Passively mode-locked Tm: YAP laser with a V2AlC saturable absorber. Microw. Opt. Technol. Lett. 2024, 66, e70007. [Google Scholar] [CrossRef]
- Shen, Y.; Han, X.; Li, L.; Duan, X.; Zhou, L.; Xie, W.; Yang, Y. Continuous-wave mode-locked Tm: YAG laser with GaAs-based SESAM. Infrared Phys. Technl. 2020, 111, 103539. [Google Scholar] [CrossRef]
- Li, L.; Yang, X.; Zhou, L. High beam quality passively Q-switched operation of a slab Tm: YLF laser with a MoS2 saturable absorber mirror. Opt. Laser Technol. 2019, 112, 39–42. [Google Scholar] [CrossRef]
- Li, L.; Yang, X.; Zhou, L. BN as a saturable absorber for a passively mode-locked 2 µm solid-state laser. Phys. Status Solidi RRL 2019, 13, 1800482. [Google Scholar] [CrossRef]
- Gao, Q.; Yang, X.; Li, S.; Wageh, S.; Al-Hartomy, O.A.; Al-Sehemi, A.G.; Zhang, H. Pb (Zrx,Ti1-x)O3 perovskite material for passively ultrafast pulse generation in a Tm: YAP laser. Opt. Laser Technol. 2023, 157, 108707. [Google Scholar] [CrossRef]
- Yan, B.; Zhang, B.; He, J.; Nie, H.; Li, G.; Liu, J.; Yang, K. Ternary chalcogenide Ta2NiS5 as a saturable absorber for a 1.9 μm passively Q-switched bulk laser. Opt. Lett. 2019, 44, 451–454. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Yang, W.; Yang, X.; Li, L. Passively mode-locked Tm: YAP laser with a Ti3AlC2-based saturable absorber. Opt. Commun. 2025, 578, 131498. [Google Scholar] [CrossRef]
- Wu, Q.; Peng, L.; Huang, Z. Advancements in ultrafast photonics: Confluence of nonlinear optics and intelligent strategies. Light Sci. Appl. 2025, 14, 97. [Google Scholar] [CrossRef]
- Radnatarov, D.; Khripunov, S.; Kobtsev, S. Automatic electronic-controlled mode locking self-start in fibre lasers with non-linear polarisation evolution. Opt. Express 2013, 21, 20626–20631. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Yang, K.; Zhao, J. 1.21 W passively mode-locked Tm: LuAG laser. Opt. Express 2015, 23, 11819–11825. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ling, W.; Qiao, D.; Sun, R.; Chen, C. Passively Q-switched mode-locked Tm,Ho: CaYAlO4 laser based on double-walled carbon nanotube saturable absorber. Front. Phys. 2020, 8, 86. [Google Scholar] [CrossRef]
- Chen, C.; Ling, W.; Sun, R.; Xu, Q.; Zhang, Y. Watt-level dual-wavelength Q-switched mode-locked all-solid-state Tm: CYA laser. Front. Phys. 2020, 7, 252. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, B.; He, J.; Yang, K.; Han, K.; Ning, J.; Lou, F. Passively Q-switched mode-locking of Tm: YAP laser based on Cr: ZnS saturable absorber. Appl. Opt. 2015, 54, 4333–4336. [Google Scholar] [CrossRef]
SAs | Crystals | Wavelength (nm) | Pulse Width (ps) | Repetition Frequency (MHz) | Pulse Energy (nJ) | Output Power (mW) | Peak Power (W) | Ref. |
---|---|---|---|---|---|---|---|---|
V2AlC | Tm:YAP | 1939 | 1077 | 82.49 | 25.7 | 2.12 | 23.8 | [36] |
DWCNT | Tm,Ho:CaYAlO4 | 2085 | 799 | 98.04 | 0.65 | 0.064 | 0.82 | [48] |
MoS2 | Tm:CYA | 1877 | 994 | 103.7 | 11.1 | 1.15 | 11.08 | [49] |
Cr:ZnS | Tm:YAP | 1976 | 980 | 350 | 2.6 | 0.940 | 2.74 | [50] |
Pb(Zrx,Ti1−x)O3 | Tm:YAP | 1936.1 | 820.7 | 102.04 | 2.9 | 0.297 | 3.55 | [41] |
Mo2TiAlC2 | Tm:YAP | 1937 | 989.5 | 103.1 | 6.01 | 0.620 | 6.08 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Chen, T.; Meng, Z.; Niu, S.; Li, Z.; Yang, X. Passively Mode-Locked Tm:YAP Laser Utilizing a Mo2TiAlC2 MAX Phase Saturable Absorber for Modulation. Photonics 2025, 12, 610. https://doi.org/10.3390/photonics12060610
Wang C, Chen T, Meng Z, Niu S, Li Z, Yang X. Passively Mode-Locked Tm:YAP Laser Utilizing a Mo2TiAlC2 MAX Phase Saturable Absorber for Modulation. Photonics. 2025; 12(6):610. https://doi.org/10.3390/photonics12060610
Chicago/Turabian StyleWang, Chen, Tianjie Chen, Zhe Meng, Sujian Niu, Zhaoxue Li, and Xining Yang. 2025. "Passively Mode-Locked Tm:YAP Laser Utilizing a Mo2TiAlC2 MAX Phase Saturable Absorber for Modulation" Photonics 12, no. 6: 610. https://doi.org/10.3390/photonics12060610
APA StyleWang, C., Chen, T., Meng, Z., Niu, S., Li, Z., & Yang, X. (2025). Passively Mode-Locked Tm:YAP Laser Utilizing a Mo2TiAlC2 MAX Phase Saturable Absorber for Modulation. Photonics, 12(6), 610. https://doi.org/10.3390/photonics12060610