Introduction to Special Issue on “Advances in 3OM: Opto-Mechatronics, Opto-Mechanics, and Optical Metrology”
1. Introduction
2. An Overview of the Articles in This Special Issue
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Grzelczyk, D.; Awrejcewicz, J. Reflectivity of Cholesteric Liquid Crystals with an Anisotropic Defect Layer Inside. Photonics 2020, 7, 58. https://doi.org/10.3390/photonics7030058.
- Gonzalez-Romero, R.; Strojnik, M.; Garcia-Torales, G.; Gomez-Rosas, G. Frequency Dependence of a Piezo-Resistive Method for Pressure Measurements of Laser-Induced Shock Waves in Solids. Photonics 2021, 8, 120. https://doi.org/10.3390/photonics8040120.
- Chen, X.; Xu, Y.; Chen, N.-K.; Shy, S.; Chui, H.-C. In Situ Depth Measurement of Laser Micromachining. Photonics 2021, 8, 493. https://doi.org/10.3390/photonics8110493.
- Talposi, A.-M.; Iancu, V.; Ursescu, D. Influence of Spatio-Temporal Couplings on Focused Optical Vortices. Photonics 2022, 9, 389. https://doi.org/10.3390/photonics9060389.
- Shen, C.-K.; Huang, Y.-N.; Liu, G.-Y.; Tsui, W.-A.; Cheng, Y.-W.; Yeh, P.-H.; Tsai, J.-c. Low-Cost 3D-Printed Electromagnetically Driven Large-Area 1-DOF Optical Scanners. Photonics 2022, 9, 484. https://doi.org/10.3390/photonics9070484.
- Jain, A.; Mishra, A.; Tiwari, V.; Singh, G.; Singh, R.P.; Singh, S. Deformation Measurement of a SS304 Stainless Steel Sheet Using Digital Image Correlation Method. Photonics 2022, 9, 912. https://doi.org/10.3390/photonics9120912.
- Hu, D.J.J.; Liu, L.; Dong, H.; Zhang, H. Design of a Broadband Fiber Optic Mode Coupler for Multimode Optical Coherence Tomography. Photonics 2023, 10, 162. https://doi.org/10.3390/photonics10020162.
- Strojnik, M.; Bravo-Medina, B.; Martin, R.; Wang, Y. Ensquared Energy and Optical Centroid Efficiency in Optical Sensors: Part 1, Theory. Photonics 2023, 10, 254. https://doi.org/10.3390/photonics10030254.
- Arai, Y.; Chen, T. Simulation-Based Considerations on the Rayleigh Criterion in Super-Resolution Techniques Based on Speckle Interferometry. Photonics 2023, 10, 374. https://doi.org/10.3390/photonics10040374.
- Strojnik, M.; Martin, R.; Wang, Y. Ensquared Energy and Optical Centroid Efficiency in Optical Sensors: Part 2, Primary Aberrations. Photonics 2024, 11, 855. https://doi.org/10.3390/photonics11090855.
References
- Cho, H. Optomechatronics: Fusion of Optical and Mechatronic Engineering, 1st ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar] [CrossRef]
- Beiser, L.; Johnson, B. Scanners. In Handbook of Optics, 3rd ed.; Bass, M., Ed.; McGraw Hill Inc.: New York, NY, USA, 2009; pp. 30.1–30.68. [Google Scholar]
- Marshall, G.F.; Stutz, G.E. (Eds.) Handbook of Optical and Laser Scanning, 2nd ed.; CRC Press: London, UK, 2011. [Google Scholar]
- Li, Y. Single-mirror beam steering system: Analysis and synthesis of high-order conic-section scan patterns. Appl. Opt. 2008, 47, 386–398. [Google Scholar] [CrossRef] [PubMed]
- Montagu, J. Scanners-galvanometric and resonant. In Encyclopedia of Optical and Photonic Engineering; CRC Press: Boca Raton, FL, USA, 2003; pp. 2465–2487. [Google Scholar]
- Duma, V.-F. Laser scanners with oscillatory elements: Design and optimization of 1D and 2D scanning functions. Appl. Math. Model. 2019, 67, 456–476. [Google Scholar] [CrossRef]
- Li, Y.; Katz, J. Asymmetric distribution of the scanned field of a rotating reflective polygon. Appl. Opt. 1997, 36, 342–352. [Google Scholar] [CrossRef] [PubMed]
- Oh, W.Y.; Yun, S.H.; Tearney, G.J.; Bouma, B.E. 115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser. Opt. Lett. 2005, 30, 3159–3161. [Google Scholar] [CrossRef]
- Duma, V.-F.; Duma, M.-A. Optomechanical Analysis and Design of Polygon Mirror-Based Laser Scanners. Appl. Sci. 2022, 12, 5592. [Google Scholar] [CrossRef]
- Yang, Y. Analytic solution of free space optical beam steering using Risley prisms. J. Light. Technol. 2008, 26, 3576–3583. [Google Scholar] [CrossRef]
- Zhou, Y.; Fan, D.; Fan, S.; Chen, Y.; Liu, G. Laser scanning by rotating polarization gratings. Appl. Opt. 2016, 55, 5149–5157. [Google Scholar] [CrossRef]
- Li, A.; Yi, W.; Zuo, Q.; Sun, W. Performance characterization of scanning beam steered by tilting double prisms. Opt. Express 2016, 24, 23543–23556. [Google Scholar] [CrossRef]
- Duma, V.-F.; Dimb, A.-L. Exact Scan Patterns of Rotational Risley Prisms Obtained with a Graphical Method: Multi-Parameter Analysis and Design. Appl. Sci. 2021, 11, 8451. [Google Scholar] [CrossRef]
- Leung, M.K.K.; Mariampillai, A.; Standish, B.A.; Lee, K.K.C.; Munce, N.R.; Vitkin, I.A.; Yang, V.X.D. High-power wavelength-swept laser in Littman telescope-less polygon filter and dual-amplifier configuration for multichannel optical coherence tomography. Opt. Lett. 2009, 34, 2814–2816. [Google Scholar] [CrossRef]
- Li, A.; Liu, X.; Sun, J.; Lu, Z. Risley-prism-based multi-beam scanning LiDAR for high-resolution three-dimensional imaging. Opt. Lasers Eng. 2022, 150, 106836. [Google Scholar] [CrossRef]
- Bravo-Medina, B.; Strojnik, M.; Garcia-Torales, G.; Torres-Ortega, H.; Estrada-Marmolejo, R.; Beltrán-González, A.; Flores, J.L. Error compensation in a pointing system based on Risley prisms. Appl. Opt. 2017, 56, 2209–2216. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Liu, J.; Xue, F.; Guan, E.; Yan, W.; Zhao, Y. Effect of mechanical error on dual-wedge laser scanning system and error correction. Appl. Opt. 2018, 57, 6047–6054. [Google Scholar] [CrossRef]
- Li, A.; Jiang, X.; Sun, J.; Bian, Y.; Wang, L.; Liu, L. Radial support analysis for large-aperture rotating wedge prism. Opt. Laser Technol. 2012, 44, 1881–1888. [Google Scholar] [CrossRef]
- Zhao, K.; Song, L.; Sun, D.; Huang, Q.; Guo, R.; Tian, G.; He, J. Design and Research of Large-Scale Curvature Adjustment Optical Mirror. Photonics 2025, 12, 338. [Google Scholar] [CrossRef]
- Yoo, H.W.; Ito, S.; Schitter, G. High speed laser scanning microscopy by iterative learning control of a galvanometer scanner. Control. Eng. Pract. 2016, 50, 12–21. [Google Scholar] [CrossRef]
- Hayakawa, T.; Watanabe, T.; Senoo, T.; Ishikawa, M. Gain-compensated sinusoidal scanning of a galvanometer mirror in proportional-integral-differential control using the pre-emphasis technique for motion-blur compensation. Appl. Opt. 2016, 55, 5640–5646. [Google Scholar] [CrossRef]
- Xiao, H.; Jiang, T.; Chen, X. Rejecting fast narrow-band disturbances with slow sensor feedback for quality beam steering in selective laser sintering. Mechatronics 2018, 56, 166–174. [Google Scholar] [CrossRef]
- Drexler, W.; Liu, M.; Kumar, A.; Kamali, T.; Unterhuber, A.; Leitgeb, R.A. Optical coherence tomography today: Speed, contrast, and multimodality. J. Biomed. Opt. 2014, 19, 071412. [Google Scholar] [CrossRef]
- Lu, C.D.; Kraus, M.F.; Potsaid, B.; Liu, J.J.; Choi, W.; Jayaraman, V.; Cable, A.E.; Hornegger, J.; Duker, J.S.; Fujimoto, J.G. Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror. Biomed. Opt. Express 2014, 5, 293–311. [Google Scholar] [CrossRef]
- Monroy, G.L.; Won, J.; Spillman, D.R.; Dsouza, R.; Boppart, S.A. Clinical translation of handheld optical coherence tomography: Practical considerations and recent advancements. J. Biomed. Opt. 2017, 22, 121715. [Google Scholar] [CrossRef] [PubMed]
- Warger, W.C., II; DiMarzio, C.A. Dual-wedge scanning confocal reflectance microscope. Opt. Lett. 2007, 32, 2140–2142. [Google Scholar] [CrossRef] [PubMed]
- Mu, X.; Zhou, G.; Yu, H.; Du, Y.; Feng, H.; Tsai, J.M.L.; Chau, F.S. Compact MEMS-driven pyramidal polygon reflector for circumferential scanned endoscopic imaging probe. Opt. Express 2012, 20, 6325–6339. [Google Scholar] [CrossRef] [PubMed]
- Strathman, M.; Liu, Y.; Keeler, E.G.; Song, M.; Baran, U.; Xi, J.; Sun, M.-T.; Wang, R.; Li, X.; Lin, L.Y. MEMS scanning micromirror for optical coherence tomography. Biomed. Opt. Express 2015, 6, 211. [Google Scholar] [CrossRef]
- Pan, T.; Gao, X.; Yang, H.; Cao, Y.; Zhao, H.; Chen, Q.; Xi, H. A MEMS Mirror-Based Confocal Laser Endomicroscope with Image Distortion Correction. IEEE Photonics J. 2023, 15, 3900408. [Google Scholar] [CrossRef]
- Gora, M.J.; Suter, M.J.; Tearney, G.J.; Li, X. Endoscopic optical coherence tomography: Technologies and clinical applications [Invited]. Biomed. Opt. Express 2017, 8, 2405–2444. [Google Scholar] [CrossRef]
- 2nd International Conference ‘Advances in 3OM’ 2023. Available online: https://3om-group-optomechatronics.ro/advances-in-3om-conference-2023/ (accessed on 17 May 2025).
- 3OM Optomechatronics Group. Available online: https://3om-group-optomechatronics.ro/home/ (accessed on 17 May 2025).
- ‘Advances in 3OM: Opto-Mechatronics, Opto-Mechanics and Optical Metrology’ Special Issue in Photonics, 2nd ed. Available online: https://www.mdpi.com/journal/photonics/special_issues/NS5DPR2QS9 (accessed on 17 May 2025).
- ‘Laser Scanning and Applications’ Special Issue in Sensors. Available online: https://www.mdpi.com/journal/sensors/special_issues/1W05Q2ZEC8 (accessed on 17 May 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duma, V.-F.; Garcia-Torales, G.; Hayakawa, T. Introduction to Special Issue on “Advances in 3OM: Opto-Mechatronics, Opto-Mechanics, and Optical Metrology”. Photonics 2025, 12, 557. https://doi.org/10.3390/photonics12060557
Duma V-F, Garcia-Torales G, Hayakawa T. Introduction to Special Issue on “Advances in 3OM: Opto-Mechatronics, Opto-Mechanics, and Optical Metrology”. Photonics. 2025; 12(6):557. https://doi.org/10.3390/photonics12060557
Chicago/Turabian StyleDuma, Virgil-Florin, Guillermo Garcia-Torales, and Tomohiko Hayakawa. 2025. "Introduction to Special Issue on “Advances in 3OM: Opto-Mechatronics, Opto-Mechanics, and Optical Metrology”" Photonics 12, no. 6: 557. https://doi.org/10.3390/photonics12060557
APA StyleDuma, V.-F., Garcia-Torales, G., & Hayakawa, T. (2025). Introduction to Special Issue on “Advances in 3OM: Opto-Mechatronics, Opto-Mechanics, and Optical Metrology”. Photonics, 12(6), 557. https://doi.org/10.3390/photonics12060557