The Use of Core-Shell Nanoparticles in Photovoltaics
Abstract
:1. Introduction
2. Design and Properties of Core-Shell Nanoparticles
2.1. Introduction to Core-Shell Nanoparticles
2.2. Synthesis and Characterisation
2.2.1. Synthesis Methods
2.2.2. Characterization Techniques
2.3. Properties of Core-Shell Nanoparticles
2.3.1. Optical Properties
2.3.2. Electrical and Chemical Properties
- (i)
- Silica (): Silica is chemically inert and transparent across the solar spectrum, making it ideal for encapsulating plasmonic cores like Au or Ag. The silica shell protects the core from oxidation and aggregation while fine-tuning the particle’s SPR [74].
- (ii)
- Titanium Dioxide (): TiO2 has a high refractive index, which enhances light scattering in core-shell nanoparticles. As a wide-bandgap semiconductor, it also facilitates electron transport in photovoltaic applications, especially in its anatase phase. Moreover, varying the shell thickness of the TiO2 layer enables fine-tuning of the plasmon resonance wavelength and optical response, providing broader design flexibility compared to many other dielectric materials [75,76,77].
- (iii)
- (iv)
- Alumina (Al2O3): Alumina is chemically resistant and acts as an insulating shell that prevents recombination, enhancing charge transport [81].
- (v)
3. Applications of Core-Shell Nanoparticles in Photovoltaics
3.1. Organic Solar Cells
3.1.1. Augmentation of Active Layers
3.1.2. Augmentation of Buffer Layers
3.2. Perovskite Solar Cells
3.2.1. Light Harvesting Enhancement
3.2.2. Stability Improvements
3.3. Dye-Sensitized Solar Cells
3.4. Inorganic Solar Cells
Enhanced Light Scattering and Trapping
4. Challenges and Future Directions
4.1. Current Limitations
4.2. Some Solutions
- Scalable Synthesis Techniques
- Advanced Synthesis Methods: Continuous flow synthesis and template-assisted approaches offer better scalability and control over particle uniformity. For example, continuous flow systems provide consistent reaction conditions, improving monodispersity and reproducibility in large-scale production [190,191]. From the point of view of large-scale device fabrication, these methods are not yet industry-standard due to high initial setup costs and technical challenges in scaling to multi-ton production levels [192,193].
- Self-assembly with Directed Control: Self-assembly techniques combined with external fields (electric or magnetic) can pattern nanoparticles into ordered arrays, improving optical performance while reducing fabrication costs. Large-scale fabrication would require consistent control of nanoparticle positioning across large areas, which remains challenging and limits industrial adoption [194,195,196,197].
- Integration into PV Devices
- Efficient Deposition Techniques: Advanced deposition methods such as spin-coating, spray-coating, and inkjet printing of core-shell nanoparticles enable the incorporation of nanoparticles into large-area solar modules with little extra costs. For example, inkjet printing allows precise deposition of core-shell NPs into pre-designed patterns, ensuring optimal placement for enhancing light trapping and charge transport [198,199]. Despite all the progress made in recent years, there remain some serious obstacles for large-scale implementations, such as issues with nozzle clogging and ink formulation, which need to be addressed to improve reliability and throughput [200,201].
- Optimized Placement: The placement of core-shell NPs within the active or transport layers of PV devices should be optimized based on the target performance metric, such as light absorption or charge extraction. While simulations provide valuable insights, translating these into practical fabrication methods requires standardized protocols and advanced computational design tools to address inconsistencies [202,203,204].
- Improving Long-term Stability
- Robust Shell Materials: Using advanced shell materials, such as alumina or zirconia, can enhance chemical and thermal stability. These materials resist environmental degradation and maintain performance under real-world conditions [205,206]. Large-scale fabrication would require the development of cost-effective and scalable methods for depositing such shells, as current approaches like atomic layer deposition are expensive and need further refinement [207].
- Encapsulation Techniques: Encapsulation of the entire solar cell, using barrier films or coatings, can protect core-shell NPs from moisture, oxygen, and UV light, extending the operational lifetime of the device [208,209,210]. This additional step adds to manufacturing costs, which industries are reluctant to absorb unless significant performance gains are demonstrated [211].
- Environmental Sustainability
- Non-toxic Materials: Developing non-toxic alternatives to toxic materials (e.g., aluminium-based plasmonic nanoparticles instead of lead-based materials) is essential for sustainable adoption [212]. Despite all the progress made in developing these alternatives, achieving comparable optical properties with non-toxic materials remains a significant technical challenge [213,214,215].
- Lifecycle Assessment: Comprehensive lifecycle assessments can help quantify the environmental impact of core-shell NPs, identifying areas where improvements can be made in material selection and processing [216,217]. These assessments are still in their infancy for many emerging nanoparticle technologies, hindering their industrial acceptance [218].
- Advanced Material Design
- Bimetallic Core-Shell Structures: Recent theoretical studies highlight the potential of bimetallic plasmonic core-shell structures with limited surface segregation. Combining metals with complementary properties (e.g., Au-Ag or Cu-Al) can result in core-shell NPs with tunable optical and electronic properties, tailored for specific PV applications. These designs leverage fundamental material properties, such as differences in cohesive energy and enthalpy of mixing, to achieve optimal performance [219,220,221,222]. From the point of view of large-scale device fabrication, scalable and cost-effective synthesis of these structures remains an obstacle [223].
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019, 24, 50. [Google Scholar] [CrossRef]
- Hassan, Q.; Algburi, S.; Sameen, A.Z.; Salman, H.M.; Jaszczur, M. A review of hybrid renewable energy systems: Solar and wind-powered solutions: Challenges, opportunities, and policy implications. Results Eng. 2023, 20, 101621. [Google Scholar] [CrossRef]
- Hasan, M.M.; Hossain, S.; Mofijur, M.; Kabir, Z.; Badruddin, I.A.; Yunus Khan, T.M.; Jassim, E. Harnessing solar power: A review of photovoltaic innovations, solar thermal systems, and the dawn of energy storage solutions. Energies 2023, 16, 6456. [Google Scholar] [CrossRef]
- Maka, A.O.; Ghalut, T.; Elsaye, E. The pathway toward decarbonisation and net-zero emissions by 2050: The role of solar energy technology. Green Technol. Sustain. 2024, 2, 100107. [Google Scholar] [CrossRef]
- Machín, A.; Márquez, F. Advancements in photovoltaic cell materials: Silicon, Organic, and Perovskite Solar cells. Materials 2024, 17, 1165. [Google Scholar] [CrossRef]
- Verlinden, P.; Young, D.L.; Xiong, G.; Reese, M.O.; Mansfield, L.M.; Powalla, M.; Haegel, N.M. Photovoltaic device innovation for a solar future. Device 2023, 1, 100013. [Google Scholar] [CrossRef]
- Gerold, E.; Antrekowitsch, H. Advancements and Challenges in Photovoltaic Cell Recycling: A Comprehensive Review. Sustainability 2024, 16, 2542. [Google Scholar] [CrossRef]
- Noman, M.; Khan, Z.; Jan, S.T. A comprehensive review on the advancements and challenges in perovskite solar cell technology. RSC Adv. 2024, 14, 5131. [Google Scholar] [CrossRef]
- Lu, L.; Luo, Z.; Xu, T.; Yu, L. Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells. Nano Lett. 2013, 13, 64. [Google Scholar] [CrossRef]
- Omrani, M.; Keshavarzi, R.; Abdi-Jalebi, M.; Gao, P. Impacts of plasmonic nanoparticles incorporation and interface energy alignment for highly efficient carbon-based perovskite solar cells. Sci. Rep. 2022, 12, 5367. [Google Scholar] [CrossRef]
- Smith, J.G.; Faucheaux, J.A.; Jain, P.K. Plasmon resonances for solar energy harvesting: A mechanistic outlook. Nano Today 2015, 10, 80. [Google Scholar] [CrossRef]
- Babicheva, V.E. Optical processes behind plasmonic applications. Nanomaterials 2023, 13, 1270. [Google Scholar] [CrossRef]
- Arinze, E.S.; Qiu, B.; Nyirjesy, G.; Thon, S.M. Plasmonic nanoparticle enhancement of solution-processed solar cells: Practical limits and opportunities. ACS Photonics 2016, 3, 173. [Google Scholar] [CrossRef]
- Erwin, W.R.; Zarick, H.F.; Talbert, E.M.; Bardhan, R. Light trapping in mesoporous solar cells with plasmonic nanostructures. Energy Environ. Sci. 2016, 9, 1601. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Radjenovic, P.M.; Zhou, X.S.; Zhang, H.; Yao, J.L.; Li, J.F. Plasmonic core–shell nanomaterials and their applications in spectroscopies. Adv. Mater. 2021, 33, 2005900. [Google Scholar] [CrossRef] [PubMed]
- Li, J.F.; Zhang, Y.J.; Ding, S.Y.; Panneerselvam, R.; Tian, Z.Q. Core–shell nanoparticle-enhanced Raman spectroscopy. Chem. Rev. 2017, 117, 5069. [Google Scholar] [CrossRef]
- Wei, S.; Wang, Q.; Zhu, J.; Sun, L.; Lin, H.; Guo, Z. Multifunctional composite core–shell nanoparticles. Nanoscale 2011, 3, 4502. [Google Scholar] [CrossRef]
- Ghosh Chaudhuri, R.; Paria, S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 2012, 112, 2433. [Google Scholar] [CrossRef] [PubMed]
- Gawande, M.B.; Goswami, A.; Asefa, T.; Guo, H.; Biradar, A.V.; Peng, D.L.; Varma, R.S. Core–shell nanoparticles: Synthesis and applications in catalysis and electrocatalysis. Chem. Soc. Rev. 2015, 44, 7590. [Google Scholar] [CrossRef]
- Li, S.; Lin, H.; Chu, C.; Martin, C.; MacSwain, W.; Meulenberg, R.W.; Zheng, W. Interfacial B-site ion diffusion in all-inorganic core/shell perovskite nanocrystals. ACS Nano 2023, 17, 22477. [Google Scholar] [CrossRef]
- Rycenga, M.; Cobley, C.M.; Zeng, J.; Li, W.; Moran, C.H.; Zhang, Q.; Xia, Y. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 2011, 111, 3669. [Google Scholar] [CrossRef]
- Cortés, E.; Wendisch, F.J.; Sortino, L.; Mancini, A.; Ezendam, S.; Saris, S.; Maier, S.A. Optical metasurfaces for energy conversion. Chem. Rev. 2022, 122, 15082. [Google Scholar] [CrossRef] [PubMed]
- Alessandri, I.; Lombardi, J.R. Enhanced Raman scattering with dielectrics. Chem. Rev. 2016, 116, 14921. [Google Scholar] [CrossRef] [PubMed]
- Kluczyk-Korch, K.; Antosiewicz, T.J. Hot carrier generation in a strongly coupled molecule–plasmonic nanoparticle system. Nanophotonics 2023, 12, 1722. [Google Scholar] [CrossRef] [PubMed]
- Cao, K.; Zhu, Q.; Shan, B.; Chen, R. Controlled synthesis of Pd/Pt core shell nanoparticles using area-selective atomic layer deposition. Sci. Rep. 2015, 5, 8470. [Google Scholar] [CrossRef]
- Chatterjee, K.; Sarkar, S.; Rao, K.J.; Paria, S. Core/shell nanoparticles in biomedical applications. Adv. Colloid Interface Sci. 2014, 209, 8. [Google Scholar] [CrossRef]
- El-Toni, A.M.; Habila, M.A.; Labis, J.P.; ALOthman, Z.A.; Alhoshan, M.; Elzatahry, A.A.; Zhang, F. Design, synthesis and applications of core–shell, hollow core, and nanorattle multifunctional nanostructures. Nanoscale 2016, 8, 2510. [Google Scholar] [CrossRef]
- Purbia, R.; Paria, S. Yolk/shell nanoparticles: Classifications, synthesis, properties, and applications. Nanoscale 2015, 7, 19789. [Google Scholar] [CrossRef]
- Altammar, K.A. A review on nanoparticles: Characteristics, synthesis, applications, and challenges. Front. Microbiol. 2023, 14, 1155622. [Google Scholar] [CrossRef]
- Nyabadza, A.; McCarthy, É.; Makhesana, M.; Heidarinassab, S.; Plouze, A.; Vazquez, M.; Brabazon, D. A review of physical, chemical and biological synthesis methods of bimetallic nanoparticles and applications in sensing, water treatment, biomedicine, catalysis and hydrogen storage. Adv. Colloid Interface Sci. 2023, 321, 103010. [Google Scholar] [CrossRef]
- Yao, Q.; Yuan, X.; Fung, V.; Yu, Y.; Leong, D.T.; Jiang, D.E.; Xie, J. Understanding seed-mediated growth of gold nanoclusters at molecular level. Nat. Commun. 2017, 8, 927. [Google Scholar] [CrossRef] [PubMed]
- Kwizera, E.A.; Chaffin, E.; Wang, Y.; Huang, X. Synthesis and properties of magnetic-optical core–shell nanoparticles. RSC Adv. 2017, 7, 17153. [Google Scholar] [CrossRef]
- Han, G.H.; Kim, K.Y.; Nam, H.; Kim, H.; Yoon, J.; Lee, J.H.; Yu, T. Facile direct seed-mediated growth of AuPt bimetallic shell on the surface of Pd nanocubes and application for direct H2O2 synthesis. Catalysts 2020, 10, 650. [Google Scholar] [CrossRef]
- Nguyen, M.D.; Tran, H.V.; Xu, S.; Lee, T.R. Fe3O4 nanoparticles: Structures, synthesis, magnetic properties, surface functionalization, and emerging applications. Appl. Sci. 2021, 11, 11301. [Google Scholar] [CrossRef]
- Brollo, M.E.F.; López-Ruiz, R.; Muraca, D.; Figueroa, S.J.; Pirota, K.R.; Knobel, M. Compact Ag@ Fe3O4 core-shell nanoparticles by means of single-step thermal decomposition reaction. Sci. Rep. 2014, 4, 6839. [Google Scholar] [CrossRef]
- Baaziz, W.; Pichon, B.P.; Liu, Y.; Grenèche, J.M.; Ulhaq-Bouillet, C.; Terrier, E.; Begin-Colin, S. Tuning of synthesis conditions by thermal decomposition toward core–Shell CoxFe1−xO@CoyFe3−yO4 and CoFe2O4 nanoparticles with spherical and cubic shapes. Chem. Mater. 2014, 26, 5063. [Google Scholar] [CrossRef]
- Reimhult, E.; Schroffenegger, M.; Lassenberger, A. Design principles for thermoresponsive core–shell nanoparticles: Controlling thermal transitions by brush morphology. Langmuir 2019, 35, 7092. [Google Scholar] [CrossRef]
- Riedel, R.; Mahr, N.; Yao, C.; Wu, A.; Yang, F.; Hampp, N. Synthesis of gold–silica core–shell nanoparticles by pulsed laser ablation in liquid and their physico-chemical properties towards photothermal cancer therapy. Nanoscale 2020, 12, 3007. [Google Scholar] [CrossRef]
- Cui, H.; Fang, X.; Qi, X.; Wang, Y.; Wang, H.; Zhai, Z.; Liu, J. Laser-fabricated core-shell Ti/W based photocatalytic films with superhydrophilic self-cleaning properties. Surf. Interfaces 2025, 61, 106147. [Google Scholar] [CrossRef]
- Lermusiaux, L.; Plissonneau, M.; Bertry, L.; Drisko, G.L.; Buissette, V.; Le Mercier, T.; Tréguer-Delapierre, M. Seeded growth of ultrathin gold nanoshells using polymer additives and microwave radiation. Sci. Rep. 2021, 11, 17831. [Google Scholar] [CrossRef]
- Barad, H.N.; Kwon, H.; Alarcón-Correa, M.; Fischer, P. Large area patterning of nanoparticles and nanostructures: Current status and future prospects. ACS Nano 2021, 15, 5861. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.R.; Osberg, K.D.; Macfarlane, R.J.; Langille, M.R.; Mirkin, C.A. Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem. Rev. 2011, 111, 3736. [Google Scholar] [CrossRef] [PubMed]
- Kamarudheen, R.; Kumari, G.; Baldi, A. Plasmon-driven synthesis of individual metal@ semiconductor core@ shell nanoparticles. Nat. Commun. 2020, 11, 3957. [Google Scholar] [CrossRef]
- Mayer, K.M.; Hafner, J.H. Localized surface plasmon resonance sensors. Chem. Rev. 2011, 111, 3828. [Google Scholar] [CrossRef]
- Petryayeva, E.; Krull, U.J. Localized surface plasmon resonance: Nanostructures, bioassays and biosensing—A review. Anal. Chim. Acta 2011, 706, 8. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Shen, J.; Ohulchanskyy, T.Y.; Patel, N.J.; Kutikov, A.; Li, Z.; Han, G. (α-NaYbF4: Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging. ACS Nano 2012, 6, 8280. [Google Scholar] [CrossRef]
- Canham, L. Introductory lecture: Origins and applications of efficient visible photoluminescence from silicon-based nanostructures. Faraday Discuss. 2020, 222, 10. [Google Scholar] [CrossRef]
- Guidelli, E.J.; Baffa, O.; Clarke, D.R. Enhanced UV emission from silver/ZnO and gold/ZnO core-shell nanoparticles: Photoluminescence, radioluminescence, and optically stimulated luminescence. Sci. Rep. 2015, 5, 14004. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, Y.; Jang, H.; Min, J.H.; Oh, J.; Jang, E.; Kim, D. The effects of discrete and gradient mid-shell structures on the photoluminescence of single InP quantum dots. Nanoscale 2019, 11, 23251. [Google Scholar] [CrossRef]
- Shin, T.; Cho, K.S.; Yun, D.J.; Kim, J.; Li, X.S.; Moon, E.S.; Jung, T.S. Exciton recombination, energy-, and charge transfer in single-and multilayer quantum-dot films on silver plasmonic resonators. Sci. Rep. 2016, 6, 26204. [Google Scholar] [CrossRef]
- Feng, L.; Li, W.; Bao, J.; Zheng, Y.; Li, Y.; Ma, Y.; Wu, A. Synthesis and luminescence properties of core-shell-shell composites: SiO2@ PMDA-Si-Tb@ SiO2 and SiO2@ PMDA-Si-Tb-phen@ SiO2. Nanomaterials 2019, 9, 189. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Jarrett, B.R.; Kauzlarich, S.M.; Louie, A.Y. Core/shell quantum dots with high relaxivity and photoluminescence for multimodality imaging. J. Am. Chem. Soc. 2007, 129, 3848. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Leung, M.K. Recent development of plasmonic resonance-based photocatalysis and photovoltaics for solar utilization. Molecules 2016, 21, 180. [Google Scholar] [CrossRef]
- Liu, X.; Qiu, J. Recent advances in energy transfer in bulk and nanoscale luminescent materials: From spectroscopy to applications. Chem. Soc. Rev. 2015, 44, 8714. [Google Scholar] [CrossRef]
- Chen, C.; Zheng, S.; Song, H. Photon management to reduce energy loss in perovskite solar cells. Chem. Soc. Rev. 2021, 50, 7250. [Google Scholar] [CrossRef] [PubMed]
- Bijelić, L.; Ruiz-Zepeda, F.; Hodnik, N. The role of high-resolution transmission electron microscopy and aberration corrected scanning transmission electron microscopy in unraveling the structure-property relationships of Pt-based fuel cells electrocatalysts. Inorg. Chem. Front. 2024, 11, 323. [Google Scholar] [CrossRef]
- Malatesta, M. Transmission electron microscopy as a powerful tool to investigate the interaction of nanoparticles with subcellular structures. Int. J. Mol. Sci. 2021, 22, 12789. [Google Scholar] [CrossRef]
- Lee, B.; Yoon, S.; Lee, J.W.; Kim, Y.; Chang, J.; Yun, J.; Lee, J.H. Statistical characterization of the morphologies of nanoparticles through machine learning based electron microscopy image analysis. ACS Nano 2020, 14, 17125. [Google Scholar] [CrossRef]
- Rice, S.B.; Chan, C.; Brown, S.C.; Eschbach, P.; Han, L.; Ensor, D.S.; Grulke, E.A. Particle size distributions by transmission electron microscopy: An interlaboratory comparison case study. Metrologia 2013, 50, 663. [Google Scholar] [CrossRef]
- Logsdail, A.J.; Johnston, R.L. Predicting the optical properties of core–shell and Janus segregated Au–M nanoparticles (M= Ag, Pd). J. Phys. Chem. C 2012, 116, 23628. [Google Scholar] [CrossRef]
- Zhang, W.E.I.; Saliba, M.; Stranks, S.D.; Sun, Y.; Shi, X.; Wiesner, U.; Snaith, H.J. Enhancement of perovskite-based solar cells employing core–shell metal nanoparticles. Nano Lett. 2013, 13, 4510. [Google Scholar] [CrossRef] [PubMed]
- Selopal, G.S.; Zhao, H.; Wang, Z.M.; Rosei, F. Core/shell quantum dots solar cells. Adv. Funct. Mater. 2020, 30, 1908762. [Google Scholar] [CrossRef]
- Li, W.; Elzatahry, A.; Aldhayan, D.; Zhao, D. Core–shell structured titanium dioxide nanomaterials for solar energy utilization. Chem. Soc. Rev. 2018, 47, 8237. [Google Scholar] [CrossRef]
- Chen, G.; Ågren, H.; Ohulchanskyy, T.Y.; Prasad, P.N. Light upconverting core–shell nanostructures: Nanophotonic control for emerging applications. Chem. Soc. Rev. 2015, 44, 1713. [Google Scholar] [CrossRef] [PubMed]
- Ju, S.; Kim, H.; Kwak, H.; Kang, C.; Jung, I.; Oh, S.; Lee, K.T. Dielectric light-trapping nanostructure for enhanced light absorption in organic solar cells. Sci. Rep. 2023, 13, 20649. [Google Scholar] [CrossRef] [PubMed]
- Dolatyari, M.; Tahmasebi, M.; Dolatyari, S.; Rostami, A.; Zarghami, A.; Yadav, A.; Klein, A. Core/Shell ZnO/TiO2, SiO2/TiO2, Al2O3/TiO2, and Al1. 9Co0. 1O3/TiO2 Nanoparticles for the Photodecomposition of Brilliant Blue E-4BA. Inorganics 2024, 12, 281. [Google Scholar] [CrossRef]
- Yu, P.; Yao, Y.; Wu, J.; Niu, X.; Rogach, A.L.; Wang, Z. Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells. Sci. Rep. 2017, 7, 7696. [Google Scholar] [CrossRef]
- Hamed, M.S.; Adedeji, M.A.; Mola, G.T. Rare-earth metal-induced plasmon resonances for enhanced photons harvesting in inverted thin film organic solar cell. Energy Fuels 2021, 35, 15017. [Google Scholar] [CrossRef]
- Li, B.; Tian, F.; Cui, X.; Xiang, B.; Zhao, H.; Zhang, H.; Wang, D. Review for rare-earth-modified perovskite materials and optoelectronic applications. Nanomaterials 2022, 12, 1773. [Google Scholar] [CrossRef]
- Zhong, Y.; Dai, H. A mini-review on rare-earth down-conversion nanoparticles for NIR-II imaging of biological systems. Nano Res. 2020, 13, 1281. [Google Scholar] [CrossRef]
- Wang, B.; Zhu, X.; Li, S.; Chen, M.; Liu, N.; Yang, H.; Yang, Y. Enhancing the photovoltaic performance of perovskite solar cells using plasmonic Au@ Pt@ Au core-shell nanoparticles. Nanomaterials 2019, 9, 1263. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hasanzadeh Kafshgari, M.; Meunier, M. Optical properties and applications of plasmonic-metal nanoparticles. Adv. Funct. Mater. 2020, 30, 2005400. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y.L.; Liu, R.S.; Tsai, D.P. Plasmonic photocatalysis. Rep. Prog. Phys. 2013, 76, 046401. [Google Scholar] [CrossRef]
- Bogireddy, N.K.R.; Pal, U.; Gomez, L.M.; Agarwal, V. Size controlled green synthesis of gold nanoparticles using Coffea arabica seed extract and their catalytic performance in 4-nitrophenol reduction. RSC Adv. 2018, 8, 24826. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Das, A.P. Modified titanium oxide (TiO2) nanocomposites and its array of applications: A review. Toxicol. Environ. Chem. 2015, 97, 514. [Google Scholar] [CrossRef]
- Taleb, A.; Mesguich, F.; Hérissan, A.; Colbeau-Justin, C.; Yanpeng, X.; Dubot, P. Optimized TiO2 nanoparticle packing for DSSC photovoltaic applications. Sol. Energy Mater. Sol. Cells 2016, 148, 59. [Google Scholar] [CrossRef]
- Bist, A.; Pant, B.; Ojha, G.P.; Acharya, J.; Park, M.; Saud, P.S. Novel materials in perovskite solar cells: Efficiency, stability, and future perspectives. Nanomaterials 2023, 13, 1724. [Google Scholar] [CrossRef] [PubMed]
- Vittal, R.; Ho, K.C. Zinc oxide based dye-sensitized solar cells: A review. Renew. Sustain. Energy Rev. 2017, 70, 935. [Google Scholar] [CrossRef]
- Zhang, P.; Wu, J.; Zhang, T.; Wang, Y.; Liu, D.; Chen, H.; Li, S. Perovskite solar cells with ZnO electron-transporting materials. Adv. Mater. 2018, 30, 1703737. [Google Scholar] [CrossRef]
- Liu, C.; Xiao, C.; Li, W. Zinc oxide nanoparticles as electron transporting interlayer in organic solar cells. J. Mater. Chem. C 2021, 9, 14114. [Google Scholar] [CrossRef]
- Lee, W.; Park, S.J. Porous anodic aluminum oxide: Anodization and templated synthesis of functional nanostructures. Chem. Rev. 2014, 114, 7556. [Google Scholar] [CrossRef] [PubMed]
- Ramli, R.A.; Laftah, W.A.; Hashim, S. Core–shell polymers: A review. RSC Adv. 2013, 3, 15565. [Google Scholar] [CrossRef]
- Xia, X.; Chao, D.; Qi, X.; Xiong, Q.; Zhang, Y.; Tu, J.; Fan, H.J. Controllable growth of conducting polymers shell for constructing high-quality organic/inorganic core/shell nanostructures and their optical-electrochemical properties. Nano Lett. 2013, 13, 4568. [Google Scholar] [CrossRef]
- Lazaroiu, A.C.; Gmal Osman, M.; Strejoiu, C.V.; Lazaroiu, G. A comprehensive overview of photovoltaic technologies and their efficiency for climate neutrality. Sustainability 2023, 15, 16297. [Google Scholar] [CrossRef]
- Yu, J.; Zheng, Y.; Huang, J. Towards high performance organic photovoltaic cells: A review of recent development in organic photovoltaics. Polymers 2014, 6, 2473. [Google Scholar] [CrossRef]
- Wang, K.; Liu, C.; Meng, T.; Yi, C.; Gong, X. Inverted organic photovoltaic cells. Chem. Soc. Rev. 2016, 45, 2937. [Google Scholar] [CrossRef]
- Roncali, J. Molecular bulk heterojunctions: An emerging approach to organic solar cells. Acc. Chem. Res. 2009, 42, 1719. [Google Scholar] [CrossRef]
- Wang, G.; Adil, M.A.; Zhang, J.; Wei, Z. Large-area organic solar cells: Material requirements, modular designs, and printing methods. Adv. Mater. 2019, 31, 1805089. [Google Scholar] [CrossRef]
- Firdaus, Y.; Le Corre, V.M.; Karuthedath, S.; Liu, W.; Markina, A.; Huang, W.; Anthopoulos, T.D. Long-range exciton diffusion in molecular non-fullerene acceptors. Nat. Commun. 2020, 11, 5220. [Google Scholar] [CrossRef]
- van Bavel, S.; Sourty, E.; de With, G.; Frolic, K.; Loos, J. Relation between photoactive layer thickness, 3D morphology, and device performance in P3HT/PCBM bulk-heterojunction solar cells. Macromolecules 2009, 42, 7396. [Google Scholar] [CrossRef]
- Gattu Subramanyam, P.; Krishnaswamy, N.; Guha, K.; Iannacci, J.; Ude, E.N.; Muniswamy, V. Enhanced optical management in organic solar cells by virtue of square-lattice triple core-shell nanostructures. Micromachines 2023, 14, 1574. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Kim, S.O. Enhancing organic solar cells with plasmonic nanomaterials. ChemNanoMat 2016, 2, 19. [Google Scholar] [CrossRef]
- Liu, S.; Jiang, R.; You, P.; Zhu, X.; Wang, J.; Yan, F. Au/Ag core–shell nanocuboids for high-efficiency organic solar cells with broadband plasmonic enhancement. Energy Environ. Sci. 2016, 9, 898. [Google Scholar] [CrossRef]
- Anrango-Camacho, C.; Pavón-Ipiales, K.; Frontana-Uribe, B.A.; Palma-Cando, A. Recent advances in hole-transporting layers for organic solar cells. Nanomaterials 2022, 12, 443. [Google Scholar] [CrossRef]
- Chou, C.H.; Chen, F.C. Plasmonic nanostructures for light trapping in organic photovoltaic devices. Nanoscale 2014, 6, 8458. [Google Scholar] [CrossRef] [PubMed]
- Yao, K.; Zhong, H.; Liu, Z.; Xiong, M.; Leng, S.; Zhang, J.; Jen, A.K.Y. Plasmonic metal nanoparticles with core–bishell structure for high-performance organic and perovskite solar cells. ACS Nano 2019, 13, 5397. [Google Scholar] [CrossRef]
- Kosco, J.; Bidwell, M.; Cha, H.; Martin, T.; Howells, C.T.; Sachs, M.; McCulloch, I. Enhanced photocatalytic hydrogen evolution from organic semiconductor heterojunction nanoparticles. Nat. Mater. 2020, 19, 559. [Google Scholar] [CrossRef]
- Wu, B.; Wu, X.; Guan, C.; Fai Tai, K.; Yeow, E.K.L.; Jin Fan, H.; Sum, T.C. Uncovering loss mechanisms in silver nanoparticle-blended plasmonic organic solar cells. Nat. Commun. 2013, 4, 2004. [Google Scholar] [CrossRef]
- Zhang, R.; Zhou, Y.; Peng, L.; Li, X.; Chen, S.; Feng, X.; Huang, W. Influence of SiO2 shell thickness on power conversion efficiency in plasmonic polymer solar cells with Au nanorod@ SiO2 core-shell structures. Sci. Rep. 2016, 6, 25036. [Google Scholar] [CrossRef]
- Chen, J.D.; Zhou, L.; Ou, Q.D.; Li, Y.Q.; Shen, S.; Lee, S.T.; Tang, J.X. Enhanced light harvesting in organic solar cells featuring a biomimetic active layer and a self-cleaning antireflective coating. Adv. Energy Mater. 2014, 4, 1301777. [Google Scholar] [CrossRef]
- Thrithamarassery Gangadharan, D.; Xu, Z.; Liu, Y.; Izquierdo, R.; Ma, D. Recent advancements in plasmon-enhanced promising third-generation solar cells. Nanophotonics 2017, 6, 175. [Google Scholar] [CrossRef]
- Ai, B.; Fan, Z.; Wong, Z.J. Plasmonic–perovskite solar cells, light emitters, and sensors. Microsyst. Nanoeng. 2022, 8, 5. [Google Scholar] [CrossRef]
- Mohammadi, M.H.; Fathi, D.; Eskandari, M. Light trapping in perovskite solar cells with plasmonic core/shell nanorod array: A numerical study. Energy Rep. 2021, 7, 1415. [Google Scholar] [CrossRef]
- Alkhalayfeh, M.A.; Aziz, A.A.; Pakhuruddin, M.Z. An overview of enhanced polymer solar cells with embedded plasmonic nanoparticles. Renew. Sustain. Energy Rev. 2021, 141, 110726. [Google Scholar] [CrossRef]
- Ha, M.; Kim, J.H.; You, M.; Li, Q.; Fan, C.; Nam, J.M. Multicomponent plasmonic nanoparticles: From heterostructured nanoparticles to colloidal composite nanostructures. Chem. Rev. 2019, 119, 12278. [Google Scholar] [CrossRef]
- Wang, W.; Qi, L. Light management with patterned micro-and nanostructure arrays for photocatalysis, photovoltaics, and optoelectronic and optical devices. Adv. Funct. Mater. 2019, 29, 1807275. [Google Scholar] [CrossRef]
- Han, G.S.; Chung, H.S.; Kim, B.J.; Kim, D.H.; Lee, J.W.; Swain, B.S.; Jung, H.S. Retarding charge recombination in perovskite solar cells using ultrathin MgO-coated TiO2 nanoparticulate films. J. Mater. Chem. A 2015, 3, 9164. [Google Scholar] [CrossRef]
- Liu, H.; Xiang, L.; Gao, P.; Wang, D.; Yang, J.; Chen, X.; Zhang, Y. Improvement strategies for stability and efficiency of perovskite solar cells. Nanomaterials 2022, 12, 3295. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, H.; Gao, F.; Li, D.; Xiang, L.; Gao, J.; Li, S. Interface optimization and growth control for high efficiency wide bandgap perovskite solar cells. Surf. Interfaces 2023, 37, 102680. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, X.; Sun, J.; Xiang, L.; Li, D.; He, L.; Li, S. Synergistic ion-anchoring passivation for perovskite solar cells with efficiency exceeding 24% and ultra-ambient stability. ACS Appl. Mater. Interfaces 2023, 15, 40032–40041. [Google Scholar] [CrossRef]
- Forgács, D.; Gil-Escrig, L.; Pérez-Del-Rey, D.; Momblona, C.; Werner, J.; Niesen, B.; Bolink, H.J. Efficient monolithic perovskite/perovskite tandem solar cells. Adv. Energy Mater. 2017, 7, 1602121. [Google Scholar] [CrossRef]
- Wali, Q.; Elumalai, N.K.; Iqbal, Y.; Uddin, A.; Jose, R. Tandem perovskite solar cells. Renew. Sustain. Energy Rev. 2018, 84, 110. [Google Scholar] [CrossRef]
- Song, Z.; Chen, C.; Li, C.; Awni, R.A.; Zhao, D.; Yan, Y. Wide-bandgap, low-bandgap, and tandem perovskite solar cells. Semicond. Sci. Technol. 2019, 34, 093001. [Google Scholar] [CrossRef]
- Lal, N.N.; Dkhissi, Y.; Li, W.; Hou, Q.; Cheng, Y.B.; Bach, U. Perovskite tandem solar cells. Adv. Energy Mater. 2017, 7, 1602761. [Google Scholar] [CrossRef]
- Li, H.; Zhang, W. Perovskite tandem solar cells: From fundamentals to commercial deployment. Chem. Rev. 2020, 120, 9950. [Google Scholar] [CrossRef]
- Ho-Baillie, A.W.; Zheng, J.; Mahmud, M.A.; Ma, F.J.; McKenzie, D.R.; Green, M.A. Recent progress and future prospects of perovskite tandem solar cells. Appl. Phys. Rev. 2021, 8, 041307. [Google Scholar] [CrossRef]
- Xue, Q.; Xia, R.; Brabec, C.J.; Yip, H.L. Recent advances in semi-transparent polymer and perovskite solar cells for power generating window applications. Energy Environ. Sci. 2018, 11, 1709. [Google Scholar] [CrossRef]
- Tai, Q.; Yan, F. Emerging semitransparent solar cells: Materials and device design. Adv. Mater. 2017, 29, 1700192. [Google Scholar] [CrossRef]
- Shi, B.; Duan, L.; Zhao, Y.; Luo, J.; Zhang, X. Semitransparent perovskite solar cells: From materials and devices to applications. Adv. Mater. 2020, 32, 1806474. [Google Scholar] [CrossRef]
- Liao, J.F.; Wu, W.Q.; Jiang, Y.; Zhong, J.X.; Wang, L.; Kuang, D.B. Understanding of carrier dynamics, heterojunction merits and device physics: Towards designing efficient carrier transport layer-free perovskite solar cells. Chem. Soc. Rev. 2020, 49, 381. [Google Scholar] [CrossRef]
- Rahmany, S.; Etgar, L. Semitransparent perovskite solar cells. ACS Energy Lett. 2020, 5, 1531. [Google Scholar] [CrossRef]
- Chandrasekhar, P.S.; Dubey, A.; Reza, K.M.; Hasan, M.N.; Bahrami, B.; Komarala, V.K.; Qiao, Q. Higher efficiency perovskite solar cells using Au@ SiO2 core–shell nanoparticles. Sustain. Energy Fuels 2018, 2, 2267. [Google Scholar]
- Fard, A.H.M.; Matloub, S. Design and simulation of bifacial perovskite solar cell with high efficiency using cubic plasmonic nanoparticles. Sol. Energy 2024, 280, 112871. [Google Scholar]
- Cheng, P.; An, Y.; Jen, A.K.Y.; Lei, D. New Nanophotonics Approaches for Enhancing the Efficiency and Stability of Perovskite Solar Cells. Adv. Mater. 2024, 36, 2309459. [Google Scholar] [CrossRef]
- Xu, L.; Yuan, S.; Ma, L.; Zhang, B.; Fang, T.; Li, X.; Song, J. All-inorganic perovskite quantum dots as light-harvesting, interfacial, and light-converting layers toward solar cells. J. Mater. Chem. A 2021, 9, 18947. [Google Scholar] [CrossRef]
- Li, X.; Zhu, J.; Wei, B. Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications. Chem. Soc. Rev. 2016, 45, 3187. [Google Scholar]
- Tan, D.Q. The search for enhanced dielectric strength of polymer-based dielectrics: A focused review on polymer nanocomposites. J. Appl. Polym. Sci. 2020, 137, 49379. [Google Scholar] [CrossRef]
- He, Z.; Zhang, C.; Meng, R.; Luo, X.; Chen, M.; Lu, H.; Yang, Y. Influence of Ag@ SiO2 with different shell thickness on photoelectric properties of hole-conductor-free perovskite solar cells. Nanomaterials 2020, 10, 2364. [Google Scholar] [CrossRef]
- Bai, Y.; Liu, C.; Shan, Y.; Chen, T.; Zhao, Y.; Yu, C.; Pang, H. Metal-organic frameworks nanocomposites with different dimensionalities for energy conversion and storage. Adv. Energy Mater. 2022, 12, 2100346. [Google Scholar] [CrossRef]
- Cayre, O.J.; Chagneux, N.; Biggs, S. Stimulus responsive core-shell nanoparticles: Synthesis and applications of polymer based aqueous systems. Soft Matter 2011, 7, 2234. [Google Scholar] [CrossRef]
- Datye, A.K.; Votsmeier, M. Opportunities and challenges in the development of advanced materials for emission control catalysts. Nat. Mater. 2021, 20, 1059. [Google Scholar] [CrossRef]
- Wang, Q.; Phung, N.; Di Girolamo, D.; Vivo, P.; Abate, A. Enhancement in lifespan of halide perovskite solar cells. Energy Environ. Sci. 2019, 12, 865. [Google Scholar] [CrossRef]
- Ma, S.; Yuan, G.; Zhang, Y.; Yang, N.; Li, Y.; Chen, Q. Development of encapsulation strategies towards the commercialization of perovskite solar cells. Energy Environ. Sci. 2022, 15, 13. [Google Scholar] [CrossRef]
- Bogachuk, D.; Zouhair, S.; Wojciechowski, K.; Yang, B.; Babu, V.; Wagner, L.; Hinsch, A. Low-temperature carbon-based electrodes in perovskite solar cells. Energy Environ. Sci. 2020, 13, 3880. [Google Scholar] [CrossRef]
- Li, J.; Xia, R.; Qi, W.; Zhou, X.; Cheng, J.; Chen, Y.; Zhang, X. Encapsulation of perovskite solar cells for enhanced stability: Structures, materials and characterization. J. Power Sources 2021, 485, 229313. [Google Scholar] [CrossRef]
- Ekeocha, J.; Ellingford, C.; Pan, M.; Wemyss, A.M.; Bowen, C.; Wan, C. Challenges and opportunities of self-healing polymers and devices for extreme and hostile environments. Adv. Mater. 2021, 33, 2008052. [Google Scholar] [CrossRef]
- Rao, H.; Sun, W.; Ye, S.; Yan, W.; Li, Y.; Peng, H.; Huang, C. Solution-processed CuS NPs as an inorganic hole-selective contact material for inverted planar perovskite solar cells. ACS Appl. Mater. Interfaces 2016, 8, 7805. [Google Scholar] [CrossRef]
- Najafi, M.; Di Giacomo, F.; Zhang, D.; Shanmugam, S.; Senes, A.; Verhees, W.; Andriessen, R. Highly efficient and stable flexible perovskite solar cells with metal oxides nanoparticle charge extraction layers. Small 2018, 14, 1702775. [Google Scholar] [CrossRef]
- Wang, Q.; Chueh, C.C.; Zhao, T.; Cheng, J.; Eslamian, M.; Choy, W.C.; Jen, A.K.Y. Effects of self-assembled monolayer modification of nickel oxide nanoparticles layer on the performance and application of inverted perovskite solar cells. ChemSusChem 2017, 10, 3803. [Google Scholar] [CrossRef]
- Tsai, J.K.; Hsu, W.D.; Wu, T.C.; Meen, T.H.; Chong, W.J. Effect of compressed TiO2 nanoparticle thin film thickness on the performance of dye-sensitized solar cells. Nanoscale Res. Lett. 2013, 8, 6. [Google Scholar] [CrossRef]
- Tiwana, P.; Docampo, P.; Johnston, M.B.; Snaith, H.J.; Herz, L.M. Electron mobility and injection dynamics in mesoporous ZnO, SnO2, and TiO2 films used in dye-sensitized solar cells. ACS Nano 2011, 5, 5166. [Google Scholar] [CrossRef]
- Ding, B.; Lee, B.J.; Yang, M.; Jung, H.S.; Lee, J.K. Surface-Plasmon Assisted Energy Conversion in Dye-Sensitized Solar Cells. Adv. Energy Mater. 2011, 1, 421. [Google Scholar] [CrossRef]
- Brown, M.D.; Suteewong, T.; Kumar, R.S.S.; D’Innocenzo, V.; Petrozza, A.; Lee, M.M.; Snaith, H.J. Plasmonic dye-sensitized solar cells using core− shell metal− insulator nanoparticles. Nano Lett. 2011, 11, 438. [Google Scholar] [CrossRef]
- Mélinon, P.; Begin-Colin, S.; Duvail, J.L.; Gauffre, F.; Boime, N.H.; Ledoux, G.; Warot-Fonrose, B. Engineered inorganic core/shell nanoparticles. Phys. Rep. 2014, 543, 197. [Google Scholar] [CrossRef]
- Feng, H.P.; Tang, L.; Zeng, G.M.; Zhou, Y.; Deng, Y.C.; Ren, X.; Yu, J.F. Core-shell nanomaterials: Applications in energy storage and conversion. Adv. Colloid Interface Sci. 2019, 267, 46. [Google Scholar] [CrossRef]
- Wooh, S.; Lee, Y.G.; Tahir, M.N.; Song, D.; Meister, M.; Laquai, F.; Char, K. Plasmon-enhanced photocurrent in quasi-solid-state dye-sensitized solar cells by the inclusion of gold/silica core–shell nanoparticles in a TiO2 photoanode. J. Mater. Chem. A 2013, 1, 12634. [Google Scholar] [CrossRef]
- Xu, Q.; Liu, F.; Meng, W.; Huang, Y. Plasmonic core-shell metal-organic nanoparticles enhanced dye-sensitized solar cells. Opt. Express 2012, 20, A907. [Google Scholar] [CrossRef]
- Zheng, Y.Z.; Tao, X.; Zhang, J.W.; Lai, X.S.; Li, N. Plasmonic enhancement of light-harvesting efficiency in tandem dye-sensitized solar cells using multiplexed gold core/silica shell nanorods. J. Power Sources 2018, 376, 32. [Google Scholar] [CrossRef]
- Chandrasekhar, P.S.; Chander, N.; Anjaneyulu, O.; Komarala, V.K. Plasmonic effect of Ag@ TiO2 core–shell nanocubes on dye-sensitized solar cell performance based on reduced graphene oxide–TiO2 nanotube composite. Thin Solid Film. 2015, 594, 55. [Google Scholar] [CrossRef]
- Devadiga, D.; Selvakumar, M.; Shetty, P.; Santosh, M.S. Recent progress in dye sensitized solar cell materials and photo-supercapacitors: A review. J. Power Sources 2021, 493, 229698. [Google Scholar] [CrossRef]
- Gong, J.; Sumathy, K.; Qiao, Q.; Zhou, Z. Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. Renew. Sustain. Energy Rev. 2017, 68, 246. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, Y.; Bahng, H.W.; Cao, Y.; Yi, C.; Saygili, Y.; Grätzel, M. Comprehensive control of voltage loss enables 11.7% efficient solid-state dye-sensitized solar cells. Energy Environ. Sci. 2018, 11, 1787. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Nguyen, T.T.; Tran, T.T.; Bang, J.; Kumar, M.; Kim, J.; Yun, J.H. Colour-Passive radiative cooling in optoelectronics with Silver/Quantum dot decorated silica multifunctional hybrid structures. Chem. Eng. J. 2024, 488, 150840. [Google Scholar] [CrossRef]
- Mirnaziry, S.R.; Shameli, M.A.; Yousefi, L. Design and analysis of multi-layer silicon nanoparticle solar cells. Sci. Rep. 2022, 12, 13259. [Google Scholar] [CrossRef]
- Ali, A.; El-Mellouhi, F.; Mitra, A.; Aïssa, B. Research progress of plasmonic nanostructure-enhanced photovoltaic solar cells. Nanomaterials 2022, 12, 788. [Google Scholar] [CrossRef]
- Tabrizi, A.A.; Pahlavan, A. Efficiency improvement of a silicon-based thin-film solar cell using plasmonic silver nanoparticles and an antireflective layer. Opt. Commun. 2020, 454, 124437. [Google Scholar] [CrossRef]
- Marangi, F.; Lombardo, M.; Villa, A.; Scotognella, F. New strategies for solar cells beyond the visible spectral range. Opt. Mater. X 2021, 11, 100083. [Google Scholar] [CrossRef]
- Sheverdin, A.; Valagiannopoulos, C. Core-shell nanospheres under visible light: Optimal absorption, scattering, and cloaking. Phys. Rev. B 2019, 99, 075305. [Google Scholar] [CrossRef]
- Devasahayam, S.; Hussain, C.M. Thin-film nanocomposite devices for renewable energy current status and challenges. Sustain. Mater. Technol. 2020, 26, e00233. [Google Scholar] [CrossRef]
- Manthina, V.; Correa Baena, J.P.; Liu, G.; Agrios, A.G. ZnO–TiO2 nanocomposite films for high light harvesting efficiency and fast electron transport in dye-sensitized solar cells. J. Phys. Chem. C 2012, 116, 23870. [Google Scholar] [CrossRef]
- Huang, J.Y.; Wang, Y.; Fei, G.T.; Xu, S.H.; Wang, B.; Zeng, Z. Dual-functional antireflection and down-shifting coating for Si solar cells. Colloids Surf. A Physicochem. Eng. Asp. 2022, 652, 129907. [Google Scholar] [CrossRef]
- Mokari, G.; Heidarzadeh, H. Efficiency enhancement of an ultra-thin silicon solar cell using plasmonic coupled core-shell nanoparticles. Plasmonics 2019, 14, 1041. [Google Scholar] [CrossRef]
- Zaine, S.N.A.; Mohamed, N.M.; Khatani, M.; Samsudin, A.E.; Shahid, M.U. Improving the light scattering efficiency of photoelectrode dye-sensitized solar cell through optimization of core-shell structure. Mater. Today Commun. 2019, 19, 220. [Google Scholar] [CrossRef]
- Mondal, K.; Sharma, A. Recent advances in the synthesis and application of photocatalytic metal–metal oxide core–shell nanoparticles for environmental remediation and their recycling process. RSC Adv. 2016, 6, 83612. [Google Scholar] [CrossRef]
- Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R.A.; Auguié, B.; Baumberg, J.J.; Liz-Marzán, L.M. Present and future of surface-enhanced Raman scattering. ACS Nano 2019, 14, 117. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Cui, K.; Ge, S.; Cheng, X.; Yan, M.; Liu, H. Flexible electronics based on micro/nanostructured paper. Adv. Mater. 2018, 30, 1801588. [Google Scholar] [CrossRef]
- Yadav, A.S.; Tran, D.T.; Teo, A.J.; Dai, Y.; Galogahi, F.M.; Ooi, C.H.; Nguyen, N.T. Core–shell particles: From fabrication methods to diverse manipulation techniques. Micromachines 2023, 14, 497. [Google Scholar] [CrossRef]
- Srivastava, K.; Jacobs, T.S.; Ostendorp, S.; Jonker, D.; Brzesowsky, F.A.; Susarrey-Arce, A.; Odijk, M. Alternative nano-lithographic tools for shell-isolated nanoparticle enhanced Raman spectroscopy substrates. Nanoscale 2024, 16, 7582. [Google Scholar] [CrossRef]
- Stokes, K.; Clark, K.; Odetade, D.; Hardy, M.; Goldberg Oppenheimer, P. Advances in lithographic techniques for precision nanostructure fabrication in biomedical applications. Discov. Nano 2023, 18, 153. [Google Scholar] [CrossRef]
- Biswas, A.; Bayer, I.S.; Biris, A.S.; Wang, T.; Dervishi, E.; Faupel, F. Advances in top–down and bottom–up surface nanofabrication: Techniques, applications future prospects. Adv. Colloid Interface Sci. 2012, 170, 2. [Google Scholar] [CrossRef]
- Ye, X.; Qi, L. Two-dimensionally patterned nanostructures based on monolayer colloidal crystals: Controllable fabrication, assembly, and applications. Nano Today 2011, 6, 608. [Google Scholar] [CrossRef]
- Bandaru, S.; Arora, D.; Ganesh, K.M.; Umrao, S.; Thomas, S.; Bhaskar, S.; Chakrabortty, S. Recent Advances in Research from Nanoparticle to Nano-Assembly: A Review. Nanomaterials 2024, 14, 1387. [Google Scholar] [CrossRef]
- Cai, Z.; Li, Z.; Ravaine, S.; He, M.; Song, Y.; Yin, Y.; Zhang, A.O. From colloidal particles to photonic crystals: Advances in self-assembly and their emerging applications. Chem. Soc. Rev. 2021, 50, 5898. [Google Scholar] [CrossRef]
- Bellani, S.; Bartolotta, A.; Agresti, A.; Calogero, G.; Grancini, G.; Di Carlo, A.; Bonaccorso, F. Solution-processed two-dimensional materials for next-generation photovoltaics. Chem. Soc. Rev. 2021, 50, 11965. [Google Scholar]
- Jankiewicz, B.J.; Jamiola, D.; Choma, J.; Jaroniec, M. Silica–metal core–shell nanostructures. Adv. Colloid Interface Sci. 2012, 170, 47. [Google Scholar] [CrossRef]
- Shilpa, G.; Kumar, P.M.; Kumar, D.K.; Deepthi, P.R.; Sadhu, V.; Sukhdev, A.; Kakarla, R.R. Recent advances in the development of high efficiency quantum dot sensitized solar cells (QDSSCs): A review. Mater. Sci. Energy Technol. 2023, 6, 546. [Google Scholar] [CrossRef]
- Raabe, D. The materials science behind sustainable metals and alloys. Chem. Rev. 2023, 123, 2436. [Google Scholar] [CrossRef]
- Alaaeddin, M.H.; Sapuan, S.M.; Zuhri, M.Y.M.; Zainudin, E.S.; Al-Oqla, F.M. Photovoltaic applications: Status and manufacturing prospects. Renew. Sustain. Energy Rev. 2019, 102, 318. [Google Scholar] [CrossRef]
- Zarmai, M.T.; Ekere, N.N.; Oduoza, C.F.; Amalu, E.H. A review of interconnection technologies for improved crystalline silicon solar cell photovoltaic module assembly. Appl. Energy 2015, 154, 173. [Google Scholar] [CrossRef]
- Luo, W.; Khoo, Y.S.; Hacke, P.; Naumann, V.; Lausch, D.; Harvey, S.P.; Ramakrishna, S. Potential-induced degradation in photovoltaic modules: A critical review. Energy Environ. Sci. 2017, 10, 43. [Google Scholar] [CrossRef]
- Ogbomo, O.O.; Amalu, E.H.; Ekere, N.N.; Olagbegi, P.O. A review of photovoltaic module technologies for increased performance in tropical climate. Renew. Sustain. Energy Rev. 2017, 75, 1225. [Google Scholar] [CrossRef]
- Farrell, C.C.; Osman, A.I.; Doherty, R.; Saad, M.; Zhang, X.; Murphy, A.; Rooney, D.W. Technical challenges and opportunities in realising a circular economy for waste photovoltaic modules. Renew. Sustain. Energy Rev. 2020, 128, 109911. [Google Scholar] [CrossRef]
- Fuentes, M.; Nofuentes, G.; Aguilera, J.; Talavera, D.L.; Castro, M. Application and validation of algebraic methods to predict the behaviour of crystalline silicon PV modules in Mediterranean climates. Sol. Energy 2007, 81, 1396. [Google Scholar] [CrossRef]
- Miozzo, L.; Yassar, A.; Horowitz, G. Surface engineering for high performance organic electronic devices: The chemical approach. J. Mater. Chem. 2010, 20, 2513. [Google Scholar] [CrossRef]
- Si, W.; Yan, C.; Chen, Y.; Oswald, S.; Han, L.; Schmidt, O.G. On chip, all solid-state and flexible micro-supercapacitors with high performance based on MnO x/Au multilayers. Energy Environ. Sci. 2013, 6, 3218. [Google Scholar] [CrossRef]
- Pearton, S.J.; Ren, F.; Zhang, A.P.; Lee, K.P. Fabrication and performance of GaN electronic devices. Mater. Sci. Eng. R Rep. 2000, 30, 55. [Google Scholar] [CrossRef]
- Schileo, G.; Grancini, G. Lead or no lead? Availability, toxicity, sustainability and environmental impact of lead-free perovskite solar cells. J. Mater. Chem. C 2021, 9, 67. [Google Scholar] [CrossRef]
- Urbina, A. The balance between efficiency, stability and environmental impacts in perovskite solar cells: A review. J. Phys. Energy 2020, 2, 022001. [Google Scholar] [CrossRef]
- Chen, W.; Bhaumik, S.; Veldhuis, S.A.; Xing, G.; Xu, Q.; Grätzel, M.; Sum, T.C. Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals. Nat. Commun. 2017, 8, 15198. [Google Scholar] [CrossRef]
- Seifert, J.S.; Nees, N.; Khan, H.; Traoré, N.E.; Drobek, D.; Peukert, W.; Taylor, R.N.K. Continuous flow synthesis and simulation-supported investigation of tunable plasmonic gold patchy nanoparticles. Nanoscale 2024, 16, 19284. [Google Scholar] [CrossRef]
- Fischer, K.; Marlow, P.; Manger, F.; Sprau, C.; Colsmann, A. Microfluidics: Continuous-Flow Synthesis of Nanoparticle Dispersions for the Fabrication of Organic Solar Cells. Adv. Mater. Technol. 2022, 7, 2200297. [Google Scholar] [CrossRef]
- Baig, N.; Kammakakam, I.; Falath, W. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2021, 2, 1821. [Google Scholar] [CrossRef]
- Mabrouk, M.; Das, D.B.; Salem, Z.A.; Beherei, H.H. Nanomaterials for biomedical applications: Production, characterisations, recent trends and difficulties. Molecules 2021, 26, 1077. [Google Scholar] [CrossRef]
- Chai, Z.; Childress, A.; Busnaina, A.A. Directed assembly of nanomaterials for making nanoscale devices and structures: Mechanisms and applications. ACS Nano 2022, 16, 17641. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Wei, J.; Giżynski, K.; Song, M.G.; Grzybowski, B.A. Interference-like patterns of static magnetic fields imprinted into polymer/nanoparticle composites. Nat. Commun. 2017, 8, 1. [Google Scholar] [CrossRef]
- Grzelczak, M.; Vermant, J.; Furst, E.M.; Liz-Marzán, L.M. Directed self-assembly of nanoparticles. ACS Nano 2010, 4, 3591. [Google Scholar] [CrossRef]
- Ambhulkar, S.; Ravichandran, D.; Zhu, Y.; Thippanna, V.; Ramanathan, A.; Patil, D.; Song, K. Nanoparticle Assembly: From Self-Organization to Controlled Micropatterning for Enhanced Functionalities. Small 2024, 20, 2306394. [Google Scholar] [CrossRef]
- Karunakaran, S.K.; Arumugam, G.M.; Yang, W.; Ge, S.; Khan, S.N.; Lin, X.; Yang, G. Recent progress in inkjet-printed solar cells. J. Mater. Chem. A 2019, 7, 13873. [Google Scholar] [CrossRef]
- Razza, S.; Castro-Hermosa, S.; Di Carlo, A.; Brown, T.M. Research Update: Large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology. Apl Mater. 2016, 4, 91508. [Google Scholar] [CrossRef]
- Zavanelli, N.; Kim, J.; Yeo, W.H. Recent advances in high-throughput nanomaterial manufacturing for hybrid flexible bioelectronics. Materials 2021, 14, 2973. [Google Scholar] [CrossRef]
- Pirela, S.V.; Martin, J.; Bello, D.; Demokritou, P. Nanoparticle exposures from nano-enabled toner-based printing equipment and human health: State of science and future research needs. Crit. Rev. Toxicol. 2017, 47, 683. [Google Scholar] [CrossRef] [PubMed]
- Kalfagiannis, N.; Karagiannidis, P.G.; Pitsalidis, C.; Panagiotopoulos, N.T.; Gravalidis, C.; Kassavetis, S.; Logothetidis, S. Plasmonic silver nanoparticles for improved organic solar cells. Sol. Energy Mater. Sol. Cells 2012, 104, 165. [Google Scholar] [CrossRef]
- Cabrini, S.; Kawata, S. (Eds.) Nanofabrication Handbook; CRC Press: Boca Raton, FL, USA, 2012; Volume 180. [Google Scholar]
- Ortiz-Perez, A.; van Tilborg, D.; van der Meel, R.; Grisoni, F.; Albertazzi, L. Machine learning-guided high throughput nanoparticle design. Digit. Discov. 2024, 3, 1280. [Google Scholar] [CrossRef]
- Li, M.; Zhou, S.; Guan, Q.; Li, W.; Li, C.; Bouville, F.; Saiz, E. Robust Underwater Oil-Repellent Biomimetic Ceramic Surfaces: Combining the Stability and Reproducibility of Functional Structures. ACS Appl. Mater. Interfaces 2022, 14, 46077. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishna, S.; Santhosh Kumar, K.S.; Mathew, D.; Reghunadhan Nair, C.P. A robust, melting class bulk superhydrophobic material with heat-healing and self-cleaning properties. Sci. Rep. 2015, 5, 18510. [Google Scholar] [CrossRef]
- Ribes, À.; Sánchez-Cabezas, S.; Hernández-Montoto, A.; Villaescusa, L.A.; Aznar, E.; Martínez-Máñez, R.; Cuenca-Bustos, A. Lab and pilot-scale synthesis of MxOm@ SiC core–shell nanoparticles. Materials 2020, 13, 649. [Google Scholar] [CrossRef]
- Rolston, N.; Printz, A.D.; Hilt, F.; Hovish, M.Q.; Brüning, K.; Tassone, C.J.; Dauskardt, R.H. Improved stability and efficiency of perovskite solar cells with submicron flexible barrier films deposited in air. J. Mater. Chem. A 2017, 5, 22975. [Google Scholar] [CrossRef]
- Uddin, A.; Upama, M.B.; Yi, H.; Duan, L. Encapsulation of organic and perovskite solar cells: A review. Coatings 2019, 9, 65. [Google Scholar] [CrossRef]
- Cao, M.; Ji, W.; Chao, C.; Li, J.; Dai, F.; Fan, X. Recent Advances in UV-Cured Encapsulation for Stable and Durable Perovskite Solar Cell Devices. Polymers 2023, 15, 3911. [Google Scholar] [CrossRef]
- Irede, E.L.; Awoyemi, R.F.; Owolabi, B.; Aworinde, O.R.; Kajola, R.O.; Hazeez, A.; Ifijen, I.H. Cutting-edge developments in zinc oxide nanoparticles: Synthesis and applications for enhanced antimicrobial and UV protection in healthcare solutions. RSC Adv. 2024, 14, 20992–21034. [Google Scholar] [CrossRef]
- Choudhary, A.; Halder, A.; Aggarwal, P.; Govind Rao, V. Plasmonic chemistry for sustainable ammonia production. Commun. Mater. 2024, 5, 69. [Google Scholar] [CrossRef]
- Zhang, X.; Ye, S.; Zhang, X.; Wu, L. Optical properties of SiO 2@ M (M= Au, Pd, Pt) core–shell nanoparticles: Material dependence and damping mechanisms. J. Mater. Chem. C 2015, 3, 2282. [Google Scholar] [CrossRef]
- Chiozzi, V.; Rossi, F. Inorganic–organic core/shell nanoparticles: Progress and applications. Nanoscale Adv. 2020, 2, 5090. [Google Scholar] [CrossRef]
- Chambon, S.; Schatz, C.; Sébire, V.; Pavageau, B.; Wantz, G.; Hirsch, L. Organic semiconductor core–shell nanoparticles designed through successive solvent displacements. Mater. Horiz. 2014, 1, 431. [Google Scholar] [CrossRef]
- Nizam, N.U.M.; Hanafiah, M.M.; Woon, K.S. A content review of life cycle assessment of nanomaterials: Current practices, challenges, and future prospects. Nanomaterials 2021, 11, 3324. [Google Scholar] [CrossRef]
- Saavedra, E.L.; Osma, J.F. Impact of Nanoparticle Additions on Life Cycle Assessment (LCA) of Ceramic Tiles Production. Nanomaterials 2024, 14, 910. [Google Scholar] [CrossRef] [PubMed]
- Usmani, S.M.; Bremer-Hoffmann, S.; Cheyns, K.; Cubadda, F.; Dumit, V.I.; Escher, S.E.; Haase, A. Review of new approach methodologies for application in risk assessment of nanoparticles in the food and feed sector: Status and challenges. EFSA Support. Publ. 2024, 21, 8826E. [Google Scholar]
- Eom, N.; Messing, M.E.; Johansson, J.; Deppert, K. General trends in core–shell preferences for bimetallic nanoparticles. ACS Nano 2021, 15, 8883. [Google Scholar] [CrossRef]
- Mahmud, S.; Satter, S.S.; Singh, A.K.; Rahman, M.M.; Mollah, M.Y.A.; Susan, M.A.B.H. Tailored engineering of bimetallic plasmonic Au@ Ag Core@ Shell nanoparticles. ACS Omega 2019, 4, 18061. [Google Scholar] [CrossRef]
- Gargiulo, J.; Herran, M.; Violi, I.L.; Sousa-Castillo, A.; Martinez, L.P.; Ezendam, S.; Cortés, E. Impact of bimetallic interface design on heat generation in plasmonic Au/Pd nanostructures studied by single-particle thermometry. Nat. Commun. 2023, 14, 3813. [Google Scholar] [CrossRef]
- Saha, A.; Khalkho, B.R.; Deb, M.K. Au–Ag core–shell composite nanoparticles as a selective and sensitive plasmonic chemical probe for L-cysteine detection in Lens culinaris (lentils). RSC Adv. 2021, 11, 20380. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Shi, Y.; Qin, D.; Xia, Y. Bimetallic core–shell nanocrystals: Opportunities and challenges. Nanoscale Horiz. 2023, 8, 1194. [Google Scholar] [CrossRef] [PubMed]
- Amiri, O.; Salavati-Niasari, M.; Bagheri, S.; Yousefi, A.T. Enhanced DSSCs efficiency via Cooperate co-absorbance (CdS QDs) and plasmonic core-shell nanoparticle (Ag@ PVP). Sci. Rep. 2016, 6, 25227. [Google Scholar] [CrossRef] [PubMed]
Device | Type of Core-Shell Nanoparticles | Improvements in Efficiency | Reference |
---|---|---|---|
Organic Solar Cells | Ag@TiO2 | From 7.82% to 9.56% | [93] |
Perovskite Solar Cells | Au@SiO2 | From 11.44% to 14.57% | [122] |
Dye-Sensitized Solar Cells | Ag@PVP | From 7.04% to 7.9% | [224] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quandt, A.; Wamwangi, D.; Kumalo, S. The Use of Core-Shell Nanoparticles in Photovoltaics. Photonics 2025, 12, 555. https://doi.org/10.3390/photonics12060555
Quandt A, Wamwangi D, Kumalo S. The Use of Core-Shell Nanoparticles in Photovoltaics. Photonics. 2025; 12(6):555. https://doi.org/10.3390/photonics12060555
Chicago/Turabian StyleQuandt, Alexander, Daniel Wamwangi, and Sandile Kumalo. 2025. "The Use of Core-Shell Nanoparticles in Photovoltaics" Photonics 12, no. 6: 555. https://doi.org/10.3390/photonics12060555
APA StyleQuandt, A., Wamwangi, D., & Kumalo, S. (2025). The Use of Core-Shell Nanoparticles in Photovoltaics. Photonics, 12(6), 555. https://doi.org/10.3390/photonics12060555