Air-Hole-Assisted Photonic Lanterns
Abstract
:1. Introduction
2. Design Principle and Optimization Process
3. Error Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Birks, T.A.; Gris-Sánchez, I.; Yerolatsitis, S.; Leon-Saval, S.G.; Thomson, R.R. The photonic lantern. Adv. Opt. Photon. 2015, 7, 107–167. [Google Scholar] [CrossRef]
- Leon-Saval, S.G.; Fontaine, N.K.; Amezcua-Correa, R. Photonic lantern as mode multiplexer for multimode optical communications. Opt. Fiber Technol. 2017, 35, 46–55. [Google Scholar] [CrossRef]
- Chen, L.; Guo, H.; Chen, S.; Wang, Z.; Liu, Y. Mode-group selective photonic lanterns for multiplexing multi-order orbital angular momentum modes. Opt. Express 2023, 31, 25128–25142. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, X.; Huang, Q.; Zhang, D.; Wang, X.; Guo, Q.; Gao, T.; Yang, Z.; Liu, Y.; Hu, H.; et al. 10-mode PM-QPSK transmission over 2320 km enabled by optimized mode permutation strategies. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 24–28 March 2024. [Google Scholar]
- Bland-Hawthorn, J.; Kern, P. Molding the flow of light: Photonics in astronomy. Phys. Today 2012, 65, 31–37. [Google Scholar] [CrossRef]
- Ozdur, I.; Toliver, P.; Woodward, T.K. Photonic-lantern-based coherent LIDAR system. Opt. Express 2015, 23, 5312–5316. [Google Scholar] [CrossRef]
- Choudhury, D.; McNicholl, D.K.; Repetti, A.; Gris-Sánchez, I.; Li, S.; Phillips, D.B.; Whyte, G.; Birks, T.A.; Wiaux, Y.; Thomson, R.R. Computational optical imaging with a photonic lantern. Nat. Commu. 2020, 11, 5217. [Google Scholar] [CrossRef]
- Yi, D.; Zhang, Y.; Wu, X.; Tsang, H. Integrated Multimode Waveguide with Photonic Lantern for Speckle Spectroscopy. IEEE J. Quantum Elect. 2021, 57, 1–8. [Google Scholar] [CrossRef]
- Li, G.; Bai, N.; Zhao, N.; Xia, C. Space-division multiplexing: The next frontier in optical communication. Adv. Opt. Photon. 2014, 6, 413–487. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, H.; Feng, H.; Wen, H.; Du, C.; Li, W.; Yang, J.; Zhang, F.; Ye, H.; Xi, L.; et al. Amplification of Multi-Order OAM Modes with High Gain and Low Differential Modal Gain. IEEE Photonics Technol. Lett. 2024, 36, 496–499. [Google Scholar] [CrossRef]
- Labroille, G.; Denolle, B.; Jian, P.; Genevaux, P.; Treps, N.; Morizur, J. Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion. Opt. Express 2014, 22, 15599–15607. [Google Scholar] [CrossRef]
- Fang, J.; Bu, J.; Li, J.; Lin, C.; Kong, A.; Yin, X.; Luo, H.; Song, X.; Xie, Z.; Lei, T.; et al. Performance optimization of multi-plane light conversion (MPLC) mode multiplexer by error tolerance analysis. Opt. Express 2021, 29, 37852–37861. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.H.; Moon, S.R.; Chen, H.; Ryf, R.; Fontaine, N.K.; Park, K.J.; Kim, K.; Lee, J.K. All-fiber 6-mode multiplexers based on fiber mode selective couplers. Opt. Express 2017, 25, 5734–5741. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Cui, J.; Ge, D.; Jia, J.; Du, C.; Xia, C.; Liu, Y.; Li, Z.; He, Y.; Chen, Z.; et al. A degenerate-mode-selective coupler for stable DSP-free MDM transmission. J. Light. Technol. 2019, 37, 4410–4420. [Google Scholar] [CrossRef]
- Ma, Y.; Zhou, K.; Kamarudin, L.; Jiang, C.; Chen, S.; Li, J.; Huang, Q.; Sun, W.; Wang, X.; Yang, Z.; et al. Mode conversion in graded-index few-mode fiber via hollow cylindrical long-period fiber gratings. Opt. Lett. 2024, 49, 5949–5952. [Google Scholar] [CrossRef]
- Eznaveh, Z.S.; Zacarias, J.C.A.; Lopez, J.E.A.; Shi, K.; Milione, G.; Jung, Y.; Thomsen, B.C.; Richardson, D.J.; Fontaine, N.; Leon-Saval, S.G.; et al. Photonic lantern broadband orbital angular momentum mode multiplexer. Opt. Express 2018, 26, 30042–30051. [Google Scholar] [CrossRef]
- Leon-Saval, S.G.; Fontaine, N.K.; Salazar-Gil, J.R.; Ercan, B.; Ryf, R.; Bland-Hawthorn, J. Mode-selective photonic lanterns for space division multiplexing. Opt. Express 2014, 22, 1036–1044. [Google Scholar] [CrossRef]
- Huang, B.; Fontaine, N.K.; Ryf, R.; Guan, B.; Leon-Saval, S.G.; Shubochkin, R.; Sun, Y.; Lingle, R.; Li, G. All-fiber mode-group-selective photonic lantern using graded-index multimode fibers. Opt. Express 2015, 23, 224–234. [Google Scholar] [CrossRef]
- Velazquez-Benitez, A.M.; Alvarado, J.C.; Lopez-Galmiche, G.; Antonio-Lopez, J.E.; Hernández-Cordero, J.; Sanchez-Mondragon, J.; Sillard, P.; Okonkwo, C.M.; Amezcua-Correa, R. Six mode selective fiber optic spatial multiplexer. Opt. Lett. 2015, 40, 1663–1666. [Google Scholar] [CrossRef]
- Mathew, N.M.; Grüner-Nielsen, L.; Lillieholm, M.; Galiliet, M.; Rottwitt, K. Air-clad photonic lanterns: Fabrication and applications. J. Opt. 2022, 24, 054011. [Google Scholar] [CrossRef]
- Mathew, N.M.; Christensen, J.B.; Grüner-Nielsen, L.; Galili, M.; Rottwitt, K. Air-cladded mode-group selective photonic lanterns for mode-division multiplexing. Opt. Express 2019, 27, 13329–13343. [Google Scholar] [CrossRef]
- Mathew, N.M.; Gruner-Nielsen, L.; Galili, M.; Lillieholm, M.; Rottwitt, K. MDM transmission using air-clad photonic lanterns. IEEE Photonics Technol. Lett. 2020, 32, 1049–1052. [Google Scholar] [CrossRef]
- Fontaine, N.K.; Carpenter, J.; Gross, S.; Leon-Saval, S.; Jung, Y.; Richardson, D.J.; Amezcua-Correa, R. Photonic lanterns, 3-D waveguides, multiplane light conversion, and other components that enable space-division multiplexing. Proc. IEEE 2022, 110, 1821–1834. [Google Scholar] [CrossRef]
- Wadsworth, W.J.; Percival, R.M.; Bouwmans, G.; Knight, J.C.; Birks, T.A.; Hedley, T.D.; Russell, P.S.J. Very high numerical aperture fibers. IEEE Photonics Technol. Lett. 2004, 16, 843–845. [Google Scholar] [CrossRef]
- Yerolatsitis, S.; Gris-Sánchez, I.; Birks, T.A. Adiabatically-tapered fiber mode multiplexers. Opt. Express 2014, 22, 608–617. [Google Scholar] [CrossRef]
- Cai, S.; Yu, S.; Lan, M.; Gao, L.; Nie, S.; Gu, W. Broadband mode converter based on photonic crystal fiber. IEEE Photonics Technol. Lett. 2014, 27, 474–477. [Google Scholar] [CrossRef]
- Ding, Y.; Li, J.; Li, S.; Wang, X.; Guo, Y.; Meng, X.; Zhao, Y.; Du, H. A photonic crystal fiber broadband mode converter with highly fitting propagation constant. J. Phys. D Appl. Phys. 2022, 55, 425103. [Google Scholar] [CrossRef]
- Ding, Y.; Li, J.; Li, S.; Qin, Y.; Zhang, Z.; Wang, X.; Guo, Y.; Meng, X.; Du, H. Eight modes selective elliptic-core photonic lantern in MIMO-free mode division multiplexing systems at S+C+L bands. J. Light. Technol. 2023, 41, 739–744. [Google Scholar] [CrossRef]
- Hou, L.; Yang, L.; Yang, Z.; Liu, Y.; Huang, Z.; Zhang, L. Compact and efficient photonic lanterns through multi-stage tapering. Opt. Lett. 2024, 49, 4779–4782. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, L.; Yang, Z.; Liu, Y.; Wang, H.; Zhao, B.; Huang, Z.; Zhang, L. Air-Hole-Assisted Photonic Lanterns. Photonics 2025, 12, 547. https://doi.org/10.3390/photonics12060547
Hou L, Yang Z, Liu Y, Wang H, Zhao B, Huang Z, Zhang L. Air-Hole-Assisted Photonic Lanterns. Photonics. 2025; 12(6):547. https://doi.org/10.3390/photonics12060547
Chicago/Turabian StyleHou, Lijie, Zhiqun Yang, Yaping Liu, Huihui Wang, Bingyi Zhao, Zhanhua Huang, and Lin Zhang. 2025. "Air-Hole-Assisted Photonic Lanterns" Photonics 12, no. 6: 547. https://doi.org/10.3390/photonics12060547
APA StyleHou, L., Yang, Z., Liu, Y., Wang, H., Zhao, B., Huang, Z., & Zhang, L. (2025). Air-Hole-Assisted Photonic Lanterns. Photonics, 12(6), 547. https://doi.org/10.3390/photonics12060547