Air-Hole-Assisted Photonic Lanterns
Abstract
1. Introduction
2. Design Principle and Optimization Process
3. Error Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Birks, T.A.; Gris-Sánchez, I.; Yerolatsitis, S.; Leon-Saval, S.G.; Thomson, R.R. The photonic lantern. Adv. Opt. Photon. 2015, 7, 107–167. [Google Scholar] [CrossRef]
- Leon-Saval, S.G.; Fontaine, N.K.; Amezcua-Correa, R. Photonic lantern as mode multiplexer for multimode optical communications. Opt. Fiber Technol. 2017, 35, 46–55. [Google Scholar] [CrossRef]
- Chen, L.; Guo, H.; Chen, S.; Wang, Z.; Liu, Y. Mode-group selective photonic lanterns for multiplexing multi-order orbital angular momentum modes. Opt. Express 2023, 31, 25128–25142. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, X.; Huang, Q.; Zhang, D.; Wang, X.; Guo, Q.; Gao, T.; Yang, Z.; Liu, Y.; Hu, H.; et al. 10-mode PM-QPSK transmission over 2320 km enabled by optimized mode permutation strategies. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 24–28 March 2024. [Google Scholar]
- Bland-Hawthorn, J.; Kern, P. Molding the flow of light: Photonics in astronomy. Phys. Today 2012, 65, 31–37. [Google Scholar] [CrossRef]
- Ozdur, I.; Toliver, P.; Woodward, T.K. Photonic-lantern-based coherent LIDAR system. Opt. Express 2015, 23, 5312–5316. [Google Scholar] [CrossRef]
- Choudhury, D.; McNicholl, D.K.; Repetti, A.; Gris-Sánchez, I.; Li, S.; Phillips, D.B.; Whyte, G.; Birks, T.A.; Wiaux, Y.; Thomson, R.R. Computational optical imaging with a photonic lantern. Nat. Commu. 2020, 11, 5217. [Google Scholar] [CrossRef]
- Yi, D.; Zhang, Y.; Wu, X.; Tsang, H. Integrated Multimode Waveguide with Photonic Lantern for Speckle Spectroscopy. IEEE J. Quantum Elect. 2021, 57, 1–8. [Google Scholar] [CrossRef]
- Li, G.; Bai, N.; Zhao, N.; Xia, C. Space-division multiplexing: The next frontier in optical communication. Adv. Opt. Photon. 2014, 6, 413–487. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, H.; Feng, H.; Wen, H.; Du, C.; Li, W.; Yang, J.; Zhang, F.; Ye, H.; Xi, L.; et al. Amplification of Multi-Order OAM Modes with High Gain and Low Differential Modal Gain. IEEE Photonics Technol. Lett. 2024, 36, 496–499. [Google Scholar] [CrossRef]
- Labroille, G.; Denolle, B.; Jian, P.; Genevaux, P.; Treps, N.; Morizur, J. Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion. Opt. Express 2014, 22, 15599–15607. [Google Scholar] [CrossRef]
- Fang, J.; Bu, J.; Li, J.; Lin, C.; Kong, A.; Yin, X.; Luo, H.; Song, X.; Xie, Z.; Lei, T.; et al. Performance optimization of multi-plane light conversion (MPLC) mode multiplexer by error tolerance analysis. Opt. Express 2021, 29, 37852–37861. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.H.; Moon, S.R.; Chen, H.; Ryf, R.; Fontaine, N.K.; Park, K.J.; Kim, K.; Lee, J.K. All-fiber 6-mode multiplexers based on fiber mode selective couplers. Opt. Express 2017, 25, 5734–5741. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Cui, J.; Ge, D.; Jia, J.; Du, C.; Xia, C.; Liu, Y.; Li, Z.; He, Y.; Chen, Z.; et al. A degenerate-mode-selective coupler for stable DSP-free MDM transmission. J. Light. Technol. 2019, 37, 4410–4420. [Google Scholar] [CrossRef]
- Ma, Y.; Zhou, K.; Kamarudin, L.; Jiang, C.; Chen, S.; Li, J.; Huang, Q.; Sun, W.; Wang, X.; Yang, Z.; et al. Mode conversion in graded-index few-mode fiber via hollow cylindrical long-period fiber gratings. Opt. Lett. 2024, 49, 5949–5952. [Google Scholar] [CrossRef]
- Eznaveh, Z.S.; Zacarias, J.C.A.; Lopez, J.E.A.; Shi, K.; Milione, G.; Jung, Y.; Thomsen, B.C.; Richardson, D.J.; Fontaine, N.; Leon-Saval, S.G.; et al. Photonic lantern broadband orbital angular momentum mode multiplexer. Opt. Express 2018, 26, 30042–30051. [Google Scholar] [CrossRef]
- Leon-Saval, S.G.; Fontaine, N.K.; Salazar-Gil, J.R.; Ercan, B.; Ryf, R.; Bland-Hawthorn, J. Mode-selective photonic lanterns for space division multiplexing. Opt. Express 2014, 22, 1036–1044. [Google Scholar] [CrossRef]
- Huang, B.; Fontaine, N.K.; Ryf, R.; Guan, B.; Leon-Saval, S.G.; Shubochkin, R.; Sun, Y.; Lingle, R.; Li, G. All-fiber mode-group-selective photonic lantern using graded-index multimode fibers. Opt. Express 2015, 23, 224–234. [Google Scholar] [CrossRef]
- Velazquez-Benitez, A.M.; Alvarado, J.C.; Lopez-Galmiche, G.; Antonio-Lopez, J.E.; Hernández-Cordero, J.; Sanchez-Mondragon, J.; Sillard, P.; Okonkwo, C.M.; Amezcua-Correa, R. Six mode selective fiber optic spatial multiplexer. Opt. Lett. 2015, 40, 1663–1666. [Google Scholar] [CrossRef]
- Mathew, N.M.; Grüner-Nielsen, L.; Lillieholm, M.; Galiliet, M.; Rottwitt, K. Air-clad photonic lanterns: Fabrication and applications. J. Opt. 2022, 24, 054011. [Google Scholar] [CrossRef]
- Mathew, N.M.; Christensen, J.B.; Grüner-Nielsen, L.; Galili, M.; Rottwitt, K. Air-cladded mode-group selective photonic lanterns for mode-division multiplexing. Opt. Express 2019, 27, 13329–13343. [Google Scholar] [CrossRef]
- Mathew, N.M.; Gruner-Nielsen, L.; Galili, M.; Lillieholm, M.; Rottwitt, K. MDM transmission using air-clad photonic lanterns. IEEE Photonics Technol. Lett. 2020, 32, 1049–1052. [Google Scholar] [CrossRef]
- Fontaine, N.K.; Carpenter, J.; Gross, S.; Leon-Saval, S.; Jung, Y.; Richardson, D.J.; Amezcua-Correa, R. Photonic lanterns, 3-D waveguides, multiplane light conversion, and other components that enable space-division multiplexing. Proc. IEEE 2022, 110, 1821–1834. [Google Scholar] [CrossRef]
- Wadsworth, W.J.; Percival, R.M.; Bouwmans, G.; Knight, J.C.; Birks, T.A.; Hedley, T.D.; Russell, P.S.J. Very high numerical aperture fibers. IEEE Photonics Technol. Lett. 2004, 16, 843–845. [Google Scholar] [CrossRef]
- Yerolatsitis, S.; Gris-Sánchez, I.; Birks, T.A. Adiabatically-tapered fiber mode multiplexers. Opt. Express 2014, 22, 608–617. [Google Scholar] [CrossRef]
- Cai, S.; Yu, S.; Lan, M.; Gao, L.; Nie, S.; Gu, W. Broadband mode converter based on photonic crystal fiber. IEEE Photonics Technol. Lett. 2014, 27, 474–477. [Google Scholar] [CrossRef]
- Ding, Y.; Li, J.; Li, S.; Wang, X.; Guo, Y.; Meng, X.; Zhao, Y.; Du, H. A photonic crystal fiber broadband mode converter with highly fitting propagation constant. J. Phys. D Appl. Phys. 2022, 55, 425103. [Google Scholar] [CrossRef]
- Ding, Y.; Li, J.; Li, S.; Qin, Y.; Zhang, Z.; Wang, X.; Guo, Y.; Meng, X.; Du, H. Eight modes selective elliptic-core photonic lantern in MIMO-free mode division multiplexing systems at S+C+L bands. J. Light. Technol. 2023, 41, 739–744. [Google Scholar] [CrossRef]
- Hou, L.; Yang, L.; Yang, Z.; Liu, Y.; Huang, Z.; Zhang, L. Compact and efficient photonic lanterns through multi-stage tapering. Opt. Lett. 2024, 49, 4779–4782. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, L.; Yang, Z.; Liu, Y.; Wang, H.; Zhao, B.; Huang, Z.; Zhang, L. Air-Hole-Assisted Photonic Lanterns. Photonics 2025, 12, 547. https://doi.org/10.3390/photonics12060547
Hou L, Yang Z, Liu Y, Wang H, Zhao B, Huang Z, Zhang L. Air-Hole-Assisted Photonic Lanterns. Photonics. 2025; 12(6):547. https://doi.org/10.3390/photonics12060547
Chicago/Turabian StyleHou, Lijie, Zhiqun Yang, Yaping Liu, Huihui Wang, Bingyi Zhao, Zhanhua Huang, and Lin Zhang. 2025. "Air-Hole-Assisted Photonic Lanterns" Photonics 12, no. 6: 547. https://doi.org/10.3390/photonics12060547
APA StyleHou, L., Yang, Z., Liu, Y., Wang, H., Zhao, B., Huang, Z., & Zhang, L. (2025). Air-Hole-Assisted Photonic Lanterns. Photonics, 12(6), 547. https://doi.org/10.3390/photonics12060547