Photonic-Aid Flexible Frequency-Hopping Signal Generator Based on Optical Comb Filtering
Abstract
:1. Introduction
2. Theory and Principle
3. Simulation Results and Discussion
3.1. Optical Spectra Performance
3.2. Demonstration of Wavelength Selection
3.3. Demonstration of Flexible FH Signal Generation
3.4. Effect of Frequency Offset Between OFC and OCF
3.5. Analysis of FH Speed
3.6. Analysis of Maximum FH Bandwidth and Parameter Selection
- FSR2 is not smaller than the minimum feasible FSR, FSRmanu, considering fabrication complexity and cost.
- N is at most Nmax, which is the maximum number of comb lines for effective wavelength selection.
- N·FSR2 meets the required frequency tuning range B.
- Δf is at least fprotect. fprotect must ensure robustness against laser frequency offset while meeting the frequency hopping rate requirements.
3.7. Comparison with the Related Work
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghelfi, P.; Laghezza, F.; Scotti, F.; Serafino, G.; Capria, A.; Pinna, S.; Onori, D.; Porzi, C.; Scaffardi, M.; Malacarne, A.; et al. A Fully Photonics-Based Coherent Radar System. Nature 2014, 507, 341–345. [Google Scholar] [CrossRef]
- Romashov, V.V.; Romashova, L.V.; Khramov, K.K.; Yakimenko, K.A.; Doktorov, A.N. Wide-Band Hybrid Frequency Synthesizer with Improved Noise Performance. In Proceedings of the 2018 Moscow Workshop on Electronic and Networking Technologies (MWENT), Moscow, Russia, 15–18 May 2018; pp. 1–4. [Google Scholar]
- Chen, R.; Li, Z.; Shi, J.; Guan, L.; Zhang, J. High Secure Sequence Design in Frequency Hopping Communications. China Commun. 2019, 16, 139–150. [Google Scholar]
- Skolnik, M. Radar Handbook; McGraw-Hill: New York, NY, USA, 2008. [Google Scholar]
- Simon, M.K.; Omura, J.K.; Scholtz, R.A.; Levitt, B.K. Spread Spectrum Communications Handbook; McGraw-Hill: New York, NY, USA, 1994. [Google Scholar]
- Neri, F. Introduction to Electronic Defense Systems, 3rd ed.; Artech: Norwood, MA, USA, 2018. [Google Scholar]
- Liu, Q.; Fok, M.P. Ultrafast and Wideband Microwave Photonic Frequency-Hopping Systems: A Review. Appl. Sci. 2020, 10, 521–538. [Google Scholar] [CrossRef]
- Kumar, N.; Suthar, B. Advances in Photonic Crystals and Devices; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Singh, A.; Thapa, K.B.; Kumar, N. Analysis and design of optical biosensors using one-dimensional photonic crystals. Optik 2015, 126, 244–250. [Google Scholar] [CrossRef]
- Kumar, N.; Saraf, J. Tunable reflectance characteristics of magnetized cold plasma-based one-dimensional defective photonic crystal. Optik 2022, 252, 168577. [Google Scholar] [CrossRef]
- Feng, X.; Yan, L.; Li, P.; Ye, J.; Zou, X.; Pan, W.; Luo, B. Photonic Approach for Generation and Fast Switching of Binary Digitally Modulated RF Signals. IEEE Photonics J. 2020, 12, 1–8. [Google Scholar] [CrossRef]
- Lei, M.; Zheng, Z.; Song, C.; Bai, Y.; Qian, J.; Huang, S.; Gao, X. Equivalent Photonic Switch for Microwave Frequency Shift Keying Signal Generation. Opt. Lett. 2019, 44, 3138–3141. [Google Scholar] [CrossRef]
- Chen, Y. High-Speed and Wideband Frequency-Hopping Microwave Signal Generation via Switching the Bias Point of an Optical Modulator. IEEE Photonics J. 2018, 10, 1–7. [Google Scholar] [CrossRef]
- Cao, P.; Hu, X.; Zhang, L.; Wu, J.; Jiang, X.; Su, Y. Photonic Generation of Microwave Frequency Shift Keying Signal Using a Single-Drive Mach-Zehnder Modulator. Opt. Express 2014, 22, 14433. [Google Scholar] [CrossRef]
- Huang, L.; Wang, P.; Xiang, P.; Chen, D.; Zhang, Y.; Tao, J.; Pu, T.; Chen, X. Photonic Generation of Microwave Frequency Shift Keying Signals. IEEE Photonics Technol. Lett. 2016, 28, 1928–1931. [Google Scholar] [CrossRef]
- Li, X.; Zhao, S.; Zhang, K.; Zhu, Z.; Zheng, Y.; Liang, D. Photonic Generation of Microwave Binary Digital Modulation Signal with Format Agility and Parameter Tunability. Opt. Commun. 2018, 429, 106–111. [Google Scholar] [CrossRef]
- Ye, J.; Yan, L.; Wang, H.; Pan, W.; Luo, B.; Zou, X. Photonic Generation of Microwave Frequency Shift Keying Signal Using a Polarization Maintaining FBG. IEEE Photonics J. 2018, 10, 1–8. [Google Scholar] [CrossRef]
- Xie, Y.; Zhuang, L.; Jiao, P.; Dai, D. Sub-Nanosecond-Speed Frequency Reconfigurable Photonic Radio Frequency Switch Using a Silicon Modulator. Photonics Res. 2020, 8, 852–857. [Google Scholar] [CrossRef]
- Jiang, H.; Yan, L.; Pan, Y.; Pan, W.; Luo, B.; Zou, X.; Eggleton, B. Microwave Photonic Comb Filter with Ultra-Fast Tunability. Opt. Lett. 2015, 40, 4895–4898. [Google Scholar] [CrossRef]
- Feng, X.; Yan, L.; Jiang, H.; Li, P.; Ye, J.; Zhou, Y.; Pan, W.; Luo, B.; Zou, X.; Zhou, T. Photonic Generation of Multilevel Frequency-Hopping Microwave Signal. IEEE Photonics J. 2019, 11, 1–7. [Google Scholar] [CrossRef]
- Zhou, F.; Wang, X.; Yan, S.; Hu, X.; Zhang, Y.; Qiu, H.; Xiao, X.; Dong, J.; Zhang, X. Frequency-Hopping Microwave Generation with a Large Time-Bandwidth Product. IEEE Photonics J. 2018, 10, 1–9. [Google Scholar] [CrossRef]
- Wang, G.; Meng, Q.; Li, Y.; Li, X.; Zhou, Y.; Zhu, Z.; Gao, C.; Li, H.; Jiang, W.; Zhao, S. High-Speed and Wideband Multilevel Frequency-Hopping Microwave Signal Generation Based on a Sagnac Loop. Results Phys. 2023, 52, 106807. [Google Scholar] [CrossRef]
- Zhou, P.; Zhang, F.; Ye, X.; Guo, Q.; Pan, S. Flexible Frequency-Hopping Microwave Generation by Dynamic Control of Optically Injected Semiconductor Laser. IEEE Photonics J. 2016, 8, 1–9. [Google Scholar] [CrossRef]
- Liu, H.; Guo, M.; Zhang, T.; Dai, J.; Xu, K. Ultralow-Phase-Noise and Broadband Frequency-Hopping Coupled Optoelectronic Oscillator Under Quiet Point Operation. Photonics Res. 2024, 12, 1785–1793. [Google Scholar] [CrossRef]
- Bochao, K.; Li, L.; Qinggui, T.; Zan, L.; Jinman, G.; Zhongbo, Z.; Xiaojun, L.; Xiongfei, L. Wideband Microwave Frequency-Hopping Signal Generation Technology Based on Coherent Double Optical Comb. J. Light. Technol. 2024, 42, 7634–7642. [Google Scholar] [CrossRef]
- He, C.; Pan, S.; Guo, R.; Zhao, Y.; Pan, M. Ultraflat optical frequency comb generated based on cascaded polarization modulators. Opt. Lett. 2012, 37, 3834–3836. [Google Scholar] [CrossRef] [PubMed]
- Wei, R.; Yan, J.; Peng, Y.; Yao, X.; Bai, M.; Zheng, Z. Optical frequency comb generation based on electro-optical modulation with high-order harmonic of a sine RF signal. Opt. Commun. 2013, 291, 269–273. [Google Scholar] [CrossRef]
- Del’Haye, P.; Schliesser, A.; Arcizet, O.; Wilken, T.; Holzwarth, R.; Kippenberg, T.J. Optical frequency comb generation from a monolithic microresonator. Nature 2007, 450, 1214–1217. [Google Scholar] [CrossRef] [PubMed]
- Fukuchi, Y.; Miyauchi, R. Optical Frequency Comb Generation from a Bismuth-Based Mode-Locked Fiber Laser. In Proceedings of the 2022 Asia Communications and Photonics Conference (ACP), Shenzhen, China, 5–8 November 2022; pp. 308–311. [Google Scholar]
- Kumar, A.; Raghuwanshi, S.K.; Kumar, S. Analysis of the tunable optical comb filter by using Mach-Zehnder interferometer. In Proceedings of the 2013 6th IEEE/International Conference on Advanced Infocomm Technology (ICAIT), Taipei, Taiwan, 6–9 December 2013; pp. 179–181. [Google Scholar]
- Lee, Y.L.; Choi, Y.W.; Jung, H.S.; Eom, T.J.; Shin, W.; Ko, D.K.; Yang, W.S.; Lee, H.M.; Kim, W.K.; Lee, H.Y. Temperature-Insensitive Dual-Comb Filter Based on Multimode Interference Ti:LiNbO3 Waveguide. IEEE Photonics Technol. Lett. 2009, 21, 507–509. [Google Scholar] [CrossRef]
- Yan, L.S.; Ye, J.; Jiang, H.Y.; Pan, W.; Luo, B.; Yi, A.L.; Guo, Y.H.; Yao, X.S. A Photonic Comb Filter with Independently and Digitally Tunable Bandwidth and Frequency Spacing. IEEE Photonics Technol. Lett. 2011, 23, 857–859. [Google Scholar] [CrossRef]
Devices | Parameters |
---|---|
OFC generator | Number of combs: 5 Initial frequency: 191.1 THz FSR: 5.8 GHz Linewidth: 1 MHz Power: 16 dBm |
DP-MZM | Extinction ratio: 25 dB Switching voltage: 4 V |
OF | Central frequency: 191.098 THz Bandwidth: 8 GHz Depth: 70 dB |
OF2 | Central frequency: 191.094 THz Bandwidth: 8.5 GHz Depth: 70 dB |
OCF | Central frequency of the first passband: 191.1004 THz FSR: 6 GHz Bandwidth: 100 MHz Depth: 70 dB |
PD | Responsivity: 0.65 A/W |
MSG | Signal amplitude: 1 V |
Devices | Parameters | Frequency Deviation |
---|---|---|
5 | 0, 2, 1, 4, 3 | 6 GHz |
10 | 1, 3, 7, 4, 9, 8, 6, 2, 5, 0 | 3 GHz |
25 | 0, 1, 6, 18, 2, 14, 20, 11, 8, 17, 24, 12, 15, 23, 22, 1, 5, 10, 7, 16, 19, 4, 3, 9, 21 | 1.2 GHz |
Technology | Hopping Level | Operational Bandwidth | Frequency Tunability | Limitations |
---|---|---|---|---|
Polarization + bias switching [17] | 4 | 12 GHz | Multiplicatively related | Limited frequency hopping points |
MRR-based tunable filtering [18] | Multi | 9 GHz | Multiplicatively related | Relatively long switching time and insufficient filter tuning stability |
MZI-based tunable filtering [19] | Multi | 30 GHz | Multiplicatively related | Insufficient filter tuning stability |
Semiconductor laser dynamics [20] | Multi | ~10 GHz | Flexible tuning | Low-frequency hopping accuracy |
Phase selection + optical switching [21] | Multi | 6 GHz | Flexible tuning | Limited operational bandwidth and relatively long switching time |
Coupled optoelectronic oscillators [22] | Multi | 16 GHz | Flexible tuning | Relatively long switching time |
Optical comb filtering [This work] | Multi | 30 GHz | Flexible tuning | Frequency shift of the light source |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Li, X.; Zhao, S.; Wang, G.; Wang, R.; Ma, J.; Zhu, Z. Photonic-Aid Flexible Frequency-Hopping Signal Generator Based on Optical Comb Filtering. Photonics 2025, 12, 539. https://doi.org/10.3390/photonics12060539
Zhou Y, Li X, Zhao S, Wang G, Wang R, Ma J, Zhu Z. Photonic-Aid Flexible Frequency-Hopping Signal Generator Based on Optical Comb Filtering. Photonics. 2025; 12(6):539. https://doi.org/10.3390/photonics12060539
Chicago/Turabian StyleZhou, Yixiao, Xuan Li, Shanghong Zhao, Guodong Wang, Ruiqiong Wang, Jialin Ma, and Zihang Zhu. 2025. "Photonic-Aid Flexible Frequency-Hopping Signal Generator Based on Optical Comb Filtering" Photonics 12, no. 6: 539. https://doi.org/10.3390/photonics12060539
APA StyleZhou, Y., Li, X., Zhao, S., Wang, G., Wang, R., Ma, J., & Zhu, Z. (2025). Photonic-Aid Flexible Frequency-Hopping Signal Generator Based on Optical Comb Filtering. Photonics, 12(6), 539. https://doi.org/10.3390/photonics12060539