Electrically Stimulated and Frequency-Tunable Photonic Tonic Spiking Neuron Based on a DFB-LD Under Optical Feedback
Abstract
:1. Introduction
2. Methods and Theory
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ashtiani, F.; Geers, A.J.; Aflatouni, F. An on-chip photonic deep neural network for image classification. Nature 2022, 606, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Shastri, B.J.; Tait, A.N.; Ferreira De Lima, T.; Pernice, W.H.P.; Bhaskaran, H.; Wright, C.D.; Prucnal, P.R. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics 2021, 15, 102–114. [Google Scholar] [CrossRef]
- Wei, C.; Yu, Y.; Wang, Z.; Jiang, L.; Zeng, Z.; Ye, J.; Zou, X.; Pan, W.; Xie, X.; Yan, L. Ultra-wideband waveguide-coupled photodiodes heterogeneously integrated on a thin-film lithium niobate platform. Light Adv. Manuf. 2023, 4, 30. [Google Scholar] [CrossRef]
- Brunner, D.; Soriano, M.C.; Mirasso, C.R.; Fischer, I. Parallel photonic information processing at gigabyte per second data rates using transient states. Nat. Commun. 2013, 4, 1364. [Google Scholar] [CrossRef]
- Shen, Y.W.; Li, R.Q.; Liu, G.T.; Yu, J.; He, X.; Yi, L.; Wang, C. Deep photonic reservoir computing recurrent network. Optica 2023, 10, 1745–1751. [Google Scholar] [CrossRef]
- Robertson, J.; Wade, E.; Kopp, Y.; Bueno, J.; Hurtado, A. Toward neuromorphic photonic networks of ultrafast spiking laser neurons. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 7700715. [Google Scholar] [CrossRef]
- Ni, M.; Lin, X.; Tang, X.; Gao, Z.; Xiao, L.; Wang, J.; Ma, F.; Zheng, Q.; Deng, T. Image transmission based on spiking dynamics of electrically controlled VCSEL-SA neuron. Photonics 2021, 8, 238. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Z.; Cui, C.; Li, R.; Li, Y.; Liu, B.; Wu, C. Simulating the spiking response of VCSEL-based optical spiking neuron. Opt. Commun. 2018, 407, 327–332. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, W.; Fu, B.; He, Z. Frequency-switched photonic spiking neurons. Opt. Express 2022, 30, 21599–21608. [Google Scholar] [CrossRef]
- Temgoua, L.P.G.; Mbe, J.H.T.; Woafo, P. Dynamical behaviors of vertical cavity surface-emitting lasers with an embedded saturable absorber subjected to an on-off keying (OOK) current modulation. Phys. Scr. 2023, 98, 085250. [Google Scholar] [CrossRef]
- Hejda, M.; Vaughan, M.; Henning, I.; Al-Seyab, R.; Hurtado, A.; Adams, M. Spiking behaviour in laterally-coupled pairs of VCSELs with applications in neuromorphic photonics. IEEE J. Sel. Top. Quantum Electron. 2023, 29, 1700210. [Google Scholar] [CrossRef]
- Xiang, S.Y.; Zhang, Y.H.; Guo, X.X.; Wen, A.J.; Hao, Y. Photonic Generation of Neuron-Like Dynamics Using VCSELs Subject to Double Polarized Optical Injection. J. Light. Technol. 2018, 36, 4227–4234. [Google Scholar] [CrossRef]
- Auge, D.; Hille, J.; Mueller, E.; Knoll, A. A survey of encoding techniques for signal processing in spiking neural networks. Neural Process. Lett. 2021, 53, 4693–4710. [Google Scholar] [CrossRef]
- Li, J.; Peng, L.; Li, S.S.; Zhang, L.; Ding, X.; Jiang, L.; Zou, X.; Pan, W.; Yan, L. Photonic spiking neuron based on a single VCSEL with optical feedback. Opt. Laser Technol. 2025, 181, 111941. [Google Scholar] [CrossRef]
- Xiang, S.Y.; Wen, A.; Pan, W. Emulation of spiking response and spiking frequency property in VCSEL-based photonic neuron. IEEE Photonics J. 2016, 8, 1504109. [Google Scholar] [CrossRef]
- Xiang, S.Y.; Shi, Y.; Guo, X.; Zhang, Y.; Wang, H.; Zheng, D.; Song, Z.; Han, Y.; Gao, S.; Zhao, S.; et al. Hardware-algorithm collaborative computing with photonic spiking neuron chip based on an integrated Fabry-Perot laser with a saturable absorber. Optica 2023, 10, 162–171. [Google Scholar] [CrossRef]
- Zheng, D.Z.; Xiang, S.Y.; Li, N.Q.; Zhang, Y.H.; Guo, X.X.; Zhu, X.J. The hybrid photonic convolutional neural networks based on SOA and FP-SA. J. Light. Technol. 2024, 42, 8819–8825. [Google Scholar] [CrossRef]
- Zhang, Q.; Jiang, N.; Zhang, Y.; Li, A.; Xiong, H.; Hu, G.; Cao, Y.; Qiu, K. On-chip spiking neural networks based on add-drop ring microresonators and electrically reconfigurable phase-change material photonic switches. Photonics Res. 2024, 12, 755–766. [Google Scholar] [CrossRef]
- Gouda, M.; Abreu, S.; Bienstman, P. Surrogate gradient learning in spiking networks trained on event-based cytometry dataset. Opt. Express 2024, 32, 16260–16272. [Google Scholar] [CrossRef]
- Peng, H.T.; Nahmias, M.A.; de Lima, T.F.; Tait, A.N.; Shastri, B.J. Neuromorphic photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 6101715. [Google Scholar] [CrossRef]
- Peng, H.T.; Angelatos, G.; De Lima, T.F.; Nahmias, M.A.; Tait, A.N.; Abbaslou, S.; Shastri, B.J.; Prucnal, P.R. Temporal information processing with an integrated laser neuron. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 5100209. [Google Scholar] [CrossRef]
- Xiang, S.Y.; Shi, Y.C.; Zhang, Y.H.; Guo, X.X.; Zheng, L. Photonic integrated neuro-synaptic core for convolutional spiking neural network. Opto-Electron. Adv. 2023, 6, 230140. [Google Scholar] [CrossRef]
- Selmi, F.; Braive, R.; Beaudoin, G.; Sagnes, I.; Kuszelewicz, R.; Erneux, T.; Barbay, S. Spike latency and response properties of an excitable micropillar laser. Phys. Rev. E 2016, 94, 042219. [Google Scholar] [CrossRef] [PubMed]
- Pammi, V.A.; Alfaro-Bittner, K.; Clerc, M.G.; Barbay, S. Photonic computing with single and coupled spiking micropillar lasers. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 1500307. [Google Scholar] [CrossRef]
- Lang, R.; Kobayashi, K. External optical feedback effects on semiconductor injection laser properties. IEEE J. Quantum Electron. 1980, 16, 347–355. [Google Scholar] [CrossRef]
- Rosado, A.; Esquivias, I. Complete optical field reconstruction and determination of linewidth enhancement factor in gain-switched semiconductor lasers using the Gerchberg-Saxton algorithm. Opt. Laser Technol. 2025, 181, 111731. [Google Scholar] [CrossRef]
- Hamedi, S.; Jahromi, H.D.; Lotfiani, A. Artificial intelligence-aided nanoplasmonic biosensor modeling. Eng. Appl. Artif. Intell. 2023, 118, 105646. [Google Scholar] [CrossRef]
- Jahromi, H.D.; Hamedi, S. Artificial intelligence approach for calculating electronic and optical properties of nanocomposites. Mater. Res. Bull. 2021, 141, 111371. [Google Scholar] [CrossRef]
- Hamedi, S.; Jahromi, H.D. Performance analysis of all-optical logical gate using artificial neural network. Expert Syst. Appl. 2021, 178, 115029. [Google Scholar] [CrossRef]
Parameters | Descriptions | Values | Units |
---|---|---|---|
Γ | Optical confinement factor | 0.06 | - |
Transparency carrier density | 1.3 × 1024 | m−3 | |
Volume of active region | 1.53 × 10−17 | m3 | |
A | Non-radiative recombination coefficient | 2.8 × 108 | s−1 |
B | Spontaneous recombination coefficient | 1.5 × 10−16 | m3s−1 |
C | Auger recombination coefficient | 9.0 × 10−41 | m6s−1 |
Differential gain | 4.38 × 10−20 | m2 | |
Photon lifetime | 2.17 | ps | |
Linewidth enhancement factor | 3 | - | |
Nonlinear gain coefficient | 1.97 × 10−23 | m3 | |
Product of the differential quantum efficiency and coupling efficiency | 0.17 | - |
Refs. | Years | Photonic Spiking Neurons | Control Methods | Tuning Ranges (GHz) |
---|---|---|---|---|
[15] | 2016 | VCSELs | pump current and optical injection | ~4 |
[12] | 2018 | VCSELs | optical injection | ~1 |
[22] | 2023 | DFB-SA | gain current | ~2 |
[14] | 2025 | VCSELs | optical feedback | ~2 |
This work | 2025 | DFB-LD | optical feedback and electrical pulse | ~5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, Z.; He, C.; Wang, Q.; Ou, P.; Wu, Z.; Xia, G. Electrically Stimulated and Frequency-Tunable Photonic Tonic Spiking Neuron Based on a DFB-LD Under Optical Feedback. Photonics 2025, 12, 510. https://doi.org/10.3390/photonics12050510
Lei Z, He C, Wang Q, Ou P, Wu Z, Xia G. Electrically Stimulated and Frequency-Tunable Photonic Tonic Spiking Neuron Based on a DFB-LD Under Optical Feedback. Photonics. 2025; 12(5):510. https://doi.org/10.3390/photonics12050510
Chicago/Turabian StyleLei, Zhiqiang, Chaotao He, Qiupin Wang, Pu Ou, Zhengmao Wu, and Guangqiong Xia. 2025. "Electrically Stimulated and Frequency-Tunable Photonic Tonic Spiking Neuron Based on a DFB-LD Under Optical Feedback" Photonics 12, no. 5: 510. https://doi.org/10.3390/photonics12050510
APA StyleLei, Z., He, C., Wang, Q., Ou, P., Wu, Z., & Xia, G. (2025). Electrically Stimulated and Frequency-Tunable Photonic Tonic Spiking Neuron Based on a DFB-LD Under Optical Feedback. Photonics, 12(5), 510. https://doi.org/10.3390/photonics12050510