Machine Learning Applied to Optical Communication Systems
1. Introduction
2. An Overview of the Published Articles
3. Conclusions
Acknowledgments
Conflicts of Interest
List of Contributions:
- He, S.; Li, Z.; Xing, S.; Yan, A.; Zhou, Y.; Shi, J.; Shen, C.; Li, Z.; He, Z.; Chen, W.; et al. A Modified Regular Perturbation Model for the Single-Span Fiber Transmission Using Learnable Methods. Photonics 2024, 11, 1178. https://doi.org/10.3390/photonics11121178.
- Freitas, A.; Pires, J. Using Artificial Neural Networks to Evaluate the Capacity and Cost of Multi-Fiber Optical Backbone Networks. Photonics 2024, 11, 1110. https://doi.org/10.3390/photonics11121110.
- Vu, D.A.; Do, N.K.H.; Nguyen, H.N.T.; Dam, H.M.; Tran, T.T.T.; Nguyen, Q.X.; Truong, D.C. DeepChaos+: Signal Detection Quality Enhancement of High-Speed DP-16QAM Optical Fiber Communication Based on Chaos Masking Technique with Deep Generative Models. Photonics 2024, 11, 967. https://doi.org/10.3390/photonics11100967.
- Srinivasan, M.; Pourafzal, A.; Giannakopoulos, S.; Andrekson, P.; Häger, C.; Wymeersch, H. Learning Gradient-Based Feed-Forward Equalizer for VCSELs. Photonics 2024, 11, 943. https://doi.org/10.3390/photonics11100943.
- Liem, A.T.; Hwang, I.-S.; Kharga, R.; Teng, C.-H. Enhancing Tactile Internet Reliability: AI-Driven Resilience in NG-EPON Networks. Photonics 2024, 11, 903. https://doi.org/10.3390/photonics11100903.
- Ji, W.; Hu, L.; Zhang, X.; Lou, J.; Chen, H.; Wang, Z. The Stability Optimization of Indoor Visible 3D Positioning Algorithms Based on Single-Light Imaging Using Attention Mechanism Convolutional Neural Networks. Photonics 2024, 11, 794. https://doi.org/10.3390/photonics11090794.
- Osahon, I.N.O.; Kostakis, I.; Powell, D.; Meredith, W.; Missous, M.; Haas, H.; Tang, J.; Rajbhandari, S. Neural Network Equalisation for High-Speed Eye-Safe Optical Wireless Communication with 850 nm SM-VCSELs. Photonics 2024, 11, 772. https://doi.org/10.3390/photonics11080772.
- Luna-Rivera, J.M.; Rabadan, J.; Rufo, J.; Gutierrez, C.A.; Guerra, V.; Perez-Jimenez, R. Impact of Optical-to-Electrical Conversion on the Design of an End-to-End Learning RGB-LED-Based Visible Light Communication System. Photonics 2024, 11, 616. https://doi.org/10.3390/photonics11070616.
- Hung, T.-Y.; Chan, D.W.U.; Peng, C.-W.; Chow, C.-W.; Tsang, H.K. Regeneration of 200 Gbit/s PAM4 Signal Produced by Silicon Microring Modulator (SiMRM) Using Mach–Zehnder Interferometer (MZI)-Based Optical Neural Network (ONN). Photonics 2024, 11, 349. https://doi.org/10.3390/photonics11040349.
- Zhong, D.; Wang, T.; Chen, Y.; Wu, Q.; Qiu, C.; Zeng, H.; Wang, Y.; Xi, J. Exploration of Four-Channel Coherent Optical Chaotic Secure Communication with the Rate of 400 Gb/s Using Photonic Reservoir Computing Based on Quantum Dot Spin-VCSELs. Photonics 2024, 11, 309. https://doi.org/10.3390/photonics11040309.
- Guo, H.; Yang, C.; Chen, Z.; Li, H. Enhanced PON and AMCC Joint Transmission with GMM-Based Probability Shaping Techniques. Photonics 2024, 11, 227. https://doi.org/10.3390/photonics11030227.
- Xu, Z.; Ji, T.; Wu, Q.; Lu, W.; Ji, H.; Yang, Y.; Qiao, G.; Tang, J.; Cheng, C.; Liu, L.; et al. Advanced Neural Network-Based Equalization in Intensity-Modulated Direct-Detection Optical Systems: Current Status and Future Trends. Photonics 2024, 11, 702. https://doi.org/10.3390/photonics11080702.
- Shao, C.; Giacoumidis, E.; Billah, S.M.; Li, S.; Li, J.; Sahu, P.; Richter, A.; Faerber, M.; Kaefer, T. Machine Learning in Short-Reach Optical Systems: A Comprehensive Survey. Photonics 2024, 11, 613. https://doi.org/10.3390/photonics11070613.
- Wu, Q.; Xu, Z.; Zhu, Y.; Zhang, Y.; Ji, H.; Yang, Y.; Qiao, G.; Liu, L.; Wang, S.; Liang, J.; et al. Machine Learning for Self-Coherent Detection Short-Reach Optical Communications. Photonics 2023, 10, 1001. https://doi.org/10.3390/photonics10091001.
References
- Wei, J.; Giacoumidis, E.; Zhou, J.; Jarajreh, M.; Li, S.; Aldaya, I.; Lu, Y.; Tsokanos, A.; Richter, A. Effective Handling of Nonlinear Distortions in CO-OFDM Using Affinity Propagation Clustering. Opt. Express 2022, 30, 15697–15707. [Google Scholar] [CrossRef]
- Ji, H.; Dong, S.; Xu, Z.; Li, J.; Unnithan, R.; Su, Y.; Shieh, W. Carrier Assisted Differential Detection with Generalized and Simplified Receiver Structure. J. Light. Technol. 2021, 39, 7159–7167. [Google Scholar] [CrossRef]
- Wu, Q.; Xu, Z.; Zhu, Y.; Ji, H.; Yang, Y.; Qiao, G.; Liu, L.; Wang, S.; Liang, J.; Wei, J.; et al. Gradient-Descent Noise Whitening Techniques for Short-Reach IM-DD Optical Interconnects with Severe Bandwidth Limitation. Opt. Express 2024, 32, 1715–1727. [Google Scholar] [CrossRef]
- Ji, T.; Sun, C.; Ji, H.; Xu, Z.; Shieh, W. Field Recovery at Low CSPR Using Interleaved Carrier Assisted Differential Detection. In Proceedings of the Optical Fiber Communication Conference (OFC), San Diego, CA, USA, 8–12 March 2020; p. W4A.3. [Google Scholar]
- Tan, Z.; Yang, C.; Xu, Z.; Chen, L.; Huang, X.; Guo, H.; Zheng, Z.; Zhang, F.; Wang, Z. Experimental Demonstration for over Mbps Baseband-over-Modulation AMCC Implementation in PtP WDM-PON. In Proceedings of the 2018 Optical Fiber Communications Conference and Exposition (OFC), San Diego, CA, USA, 11–15 March 2018; p. Tu3L.3. [Google Scholar]
- Jarajreh, M.A.; Giacoumidis, E.; Aldaya, I.; Le, S.T.; Tsokanos, A.; Ghassemlooy, Z.; Doran, N.J. Artificial Neural Network Nonlinear Equalizer for Coherent Optical OFDM. IEEE Photonics Technol. Lett. 2014, 27, 387–390. [Google Scholar] [CrossRef]
- Silva, L.C.B.; Marciano, P.R.N.; Pontes, M.J.; Monteiro, M.E.; André, P.S.B.; Segatto, M.E.V. Integrated Photonic Neural Networks for Equalizing Optical Communication Signals: A Review. Photonics 2025, 12, 39. [Google Scholar] [CrossRef]
- Freire, P.J.; Osadchuk, Y.; Spinnler, B.; Napoli, A.; Schairer, W.; Costa, N.; Prilepsky, J.E.; Turitsyn, S.K. Performance Versus Complexity Study of Neural Network Equalizers in Coherent Optical Systems. J. Light. Technol. 2021, 39, 6085–6096. [Google Scholar] [CrossRef]
- Wei, J.; Yi, L.; Giacoumidis, E.; Cheng, Q.; Tao Lau, A.P. Special Issue on “Optics for AI and AI for Optics”. Appl. Sci. 2020, 10, 3262. [Google Scholar] [CrossRef]
- Liu, X.; Li, C.; Jiang, Z.; Han, L. Low-Complexity Pruned Convolutional Neural Network Based Nonlinear Equalizer in Coherent Optical Communication Systems. Electronics 2023, 12, 3120. [Google Scholar] [CrossRef]
- Hassan, S.; Tariq, N.; Naqvi, R.A.; Rehman, A.U.; Kaabar, M.K. Performance Evaluation of Machine Learning-Based Channel Equalization Techniques: New Trends and Challenges. J. Sens. 2022, 2022, 2053086. [Google Scholar] [CrossRef]
- He, P.; Wu, F.; Yang, M.; Yang, A.; Guo, P.; Qiao, Y.; Xin, X. A Fiber Nonlinearity Compensation Scheme with Complex-Valued Dimension-Reduced Neural Network. IEEE Photonics J. 2021, 13, 7200507. [Google Scholar] [CrossRef]
- Deligiannidis, S.; Mesaritakis, C.; Bogris, A. Performance and Complexity Analysis of Bi-directional Recurrent Neural Network Models Versus Volterra Nonlinear Equalizers in Digital Coherent Systems. J. Light. Technol. 2021, 39, 5791–5798. [Google Scholar] [CrossRef]
- Xu, Z.; Sun, C.; Dong, S.; Manton, J.H.; Shieh, W. Towards Low Computational Complexity for Neural Network-Based Equalization in PAM4 Short-Reach Direct Detection Systems by Multi-Symbol Prediction. In Proceedings of the Optical Fiber Communication Conference (OFC), San Francisco, CA, USA, 6–10 June 2021; p. Th1A.47. [Google Scholar]
- Peng, C.; Chan, D.; Chow, C.; Hung, T.; Jian, Y.; Tong, Y.; Kuo, P.; Chen, G.; Liu, Y.; Yeh, C.; et al. Long Short Term Memory Neural Network (LSTMNN) and Inter-Symbol Feature Extraction for 160 Gbit/s PAM4 from Silicon Micro-Ring Transmitter. Opt. Commun. 2023, 529, 129067. [Google Scholar] [CrossRef]
- Taniguchi, H.; Yamamoto, S.; Masuda, A.; Kisaka, Y.; Kanazawa, S. 800-Gbps PAM-4 2-km Transmission using 4-λ LAN-WDM TOSA with MLSE based on Deep Neural Network. In Proceedings of the Optical Fiber Communication Conference (OFC), San Diego, CA, USA, 6–10 March 2022. [Google Scholar]
- Arnold, E.; Bocherer, G.; Strasser, F.; Muller, E.; Spilger, P.; Billaudelle, S.; Weis, J.; Schemmel, J.; Calabro, S.; Kuschnerov, M. Spiking Neural Network Nonlinear Demapping on Neuromorphic Hardware for IM/DD Optical Communication. J. Light. Technol. 2023, 41, 3424–3431. [Google Scholar] [CrossRef]
- Liu, B.; Bluemm, C.; Calabro, S.; Li, B.; Schlichtmann, U. Area-Efficient Neural Network CD Equalizer for 4 × 200Gb/s PAM4 CWDM4 Systems. In Proceedings of the Optical Fiber Communication Conference (OFC), San Diego, CA, USA, 5–9 March 2023. [Google Scholar]
- Chen, G.; Du, J.; Sun, L.; Zhang, W.; Xu, K.; Chen, X.; Reed, G.T.; He, Z. Nonlinear Distortion Mitigation by Machine Learning of SVM Classification for PAM-4 andPAM-8 Modulated Optical Interconnection. J. Light. Technol. 2018, 3, 650–657. [Google Scholar] [CrossRef]
- Xu, Z.; Wu, Q.; Lu, W.; Ji, H.; Chen, H.; Ji, T.; Yang, Y.; Qiao, G.; Tang, J.; Cheng, C.; et al. Weight-Adaptive Joint Mixed-Precision Quantization and Pruning for Neural Network-Based Equalization in Short-Reach Direct Detection Links. Opt. Lett. 2024, 49, 3500–3503. [Google Scholar] [CrossRef]
- Liu, X.; Li, J.; Fan, Z.; Zhao, J. Transfer-Learning Based Convolutional Neural Network for Short-Reach Optical Interconnects. In Proceedings of the Asia Communications and Photonics Conference (ACP), Shanghai, China, 24–27 October 2021. [Google Scholar]
- Miao, X.; Bi, M.; Yu, J.; Li, L.; Hu, W. SVM-Modified-FFE Enabled Chirp Management for 10G DML-based 50Gb/s/λ PAM4 IM-DD PON. In Proceedings of the Optical Fiber Communications Conference (OFC), San Diego, CA, USA, 3–7 March 2019. [Google Scholar]
- Kaneda, N.; Zhu, Z.; Chuang, C.; Mahadevan, A.; Farah, B.; Bergman, K.; Veen, D.; Houtsma, V. FPGA Implementation of Deep Neural Network Based Equalizers for High-Speed PON. In Proceedings of the Optical Fiber Communication Conference (OFC), San Diego, CA, USA, 8–12 March 2020. [Google Scholar]
- Chen, Z.; Wang, W.; Zou, D.; Ni, W.; Luo, D.; Li, F. Real-Valued Neural Network Nonlinear Equalization for Long-Reach PONs Based on SSB Modulation. IEEE Photonics Technol. Lett. 2022, 35, 167–170. [Google Scholar] [CrossRef]
- Huang, L.; Jiang, W.; Xu, Y.; Hu, W.; Yi, L. Low-Complexity Volterra-Inspired Neural Network Equalizer in 100-G Band-Limited IMDD PON System. Opt. Lett. 2022, 47, 5692–5695. [Google Scholar] [CrossRef]
- Lu, X.; Qiao, L.; Zhou, Y.; Yu, W.; Chi, N. An I-Q-Time 3-dimensional post-equalization algorithm based on DBSCAN of machine learning in CAP VLC system. Opt. Commun. 2019, 430, 299–303. [Google Scholar] [CrossRef]
- Haigh, P.A.; Ghassemlooy, Z.; Rajbhandari, S.; Papakonstantinou, I.; Popoola, W. Visible light communications: 170 Mb/s using an artificial neural network equalizer in a low bandwidth white light configuration. J. Light. Technol. 2014, 32, 1807–1813. [Google Scholar] [CrossRef]
- Loureiro, P.A.; Fernandes, G.M.; Correia, S.F.; Ferreira, R.A.; Guiomar, F.P.; Monteiro, P.P. Multi-Gigabit RGB-VLC Transmission with Jointly Optimized Lighting and Communications. J. Light. Technol. 2024, 42, 4425–4432. [Google Scholar] [CrossRef]
- Jin, R.; Wei, Y.; Zhang, J.; Shi, J.; Chi, N. Neural-Network-Based End-To-End Learning for Adaptive Optimization of Two-Dimensional Signal Generation in UVLC Systems. Opt. Express 2024, 32, 6309–6328. [Google Scholar] [CrossRef]
- Lu, X.; Li, Y.; Chen, X.; Li, Y.; Liu, Y. Discrete wavelet transform assisted convolutional neural network equalizer for PAM VLC system. Opt. Express 2024, 32, 10429–10443. [Google Scholar] [CrossRef]
- Xu, B.; Min, T.; Yue, C.P. Design of PAM-8 VLC Transceiver System Employing Neural Network-Based FFE and Post-Equalization. Electronics 2022, 11, 3908. [Google Scholar] [CrossRef]
- Lu, X.; Lu, C.; Yu, W.; Qiao, L.; Liang, S.; Lau, A.P.T.; Chi, N. Memory-controlled deep LSTM neural network post-equalizer used in high-speed PAM VLC system. Opt. Express 2019, 27, 7822–7833. [Google Scholar] [CrossRef]
- Mobini, M.; Kaddoum, G.; Herceg, M. Design of a SIMO Deep Learning-Based Chaos Shift Keying (DLCSK) Communication System. Sensors 2022, 22, 333. [Google Scholar] [CrossRef]
- Ke, J.; Yi, L.; Yang, Z.; Yang, Y.; Zhuge, Q.; Chen, Y.; Hu, W. 32 Gb/s chaotic optical communications by deep-learning-based chaos synchronization. Opt. Lett. 2019, 44, 5776–5779. [Google Scholar] [CrossRef]
- He, L.; Lai, R.; Shao, S.; Li, Z. Design of a Chaotic Communication System Based on Deep Learning with Two-Dimensional Reshaping. IEEE Trans. Veh. Technol. 2024, 73, 10421–10434. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, L.; Jiang, Y.; Wu, Z. Reliable and Secure Deep Learning-Based OFDM-DCSK Transceiver Design without Delivery of Reference Chaotic Sequences. IEEE Trans. Veh. Technol. 2022, 71, 8059–8074. [Google Scholar] [CrossRef]
- Tanimura, T.; Hoshida, T.; Kato, T.; Watanabe, S.; Morikawa, H. Convolutional Neural Network-Based Optical Performance Monitoring for Optical Transport Networks. J. Opt. Commun. Netw. 2019, 11, A52–A59. [Google Scholar] [CrossRef]
- Wu, X.; Jargon, J.A.; Skoog, R.A.; Paraschis, L.; Willner, A.E. Applications of Artificial Neural Networks in Optical Performance Monitoring. J. Light. Technol. 2009, 27, 3580–3589. [Google Scholar]
- Khan, F.N.; Zhou, Y.; Lau, A.P.T.; Lu, C. Modulation Format Identification in Heterogeneous Fiber-Optic Networks Using Artificial Neural Networks. Opt. Express 2012, 20, 12422–12431. [Google Scholar] [CrossRef] [PubMed]
- Abdelli, K.; Tropschug, C.; Griesser, H.; Pachnicke, S. Fault Monitoring in Passive Optical Networks using Machine Learning Techniques. In Proceedings of the 23rd International Conference on Transparent Optical Networks, Bucharest, Romania, 2–6 July 2023; pp. 1–5. [Google Scholar]
- Khan, F.N.; Zhong, K.; Zhou, X.; Al-Arashi, W.H.; Yu, C.; Lu, C.; Lau, A.P.T. Joint OSNR monitoring and modulation format identification in digital coherent receivers using deep neural networks. Opt. Express 2017, 25, 17767–17776. [Google Scholar] [CrossRef]
- Wang, C.; Fu, S.; Xiao, Z.; Tang, M.; Liu, D. Long Short-Term Memory Neural Network (LSTM-NN) Enabled Accurate Optical Signal-to-Noise Ratio (OSNR) Monitoring. J. Light. Technol. 2019, 37, 4140–4146. [Google Scholar] [CrossRef]
- Saif, W.S.; Esmail, M.A.; Ragheb, A.M.; Alshawi, T.A.; Alshebeili, S.A. Machine Learning Techniques for Optical Performance Monitoring and Modulation Format Identification: A Survey. IEEE Commun. Surv. Tutor. 2020, 22, 2839–2882. [Google Scholar] [CrossRef]
- Musumeci, F.; Rottondi, C.E.M.; Corani, G.; Shahkarami, S.; Cugini, F.; Tornatore, M. A Tutorial on Machine Learning for Failure Management in Optical Networks. J. Light. Technol. 2019, 37, 4125–4139. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Wei, J. Machine Learning Applied to Optical Communication Systems. Photonics 2025, 12, 458. https://doi.org/10.3390/photonics12050458
Xu Z, Wei J. Machine Learning Applied to Optical Communication Systems. Photonics. 2025; 12(5):458. https://doi.org/10.3390/photonics12050458
Chicago/Turabian StyleXu, Zhaopeng, and Jinlong Wei. 2025. "Machine Learning Applied to Optical Communication Systems" Photonics 12, no. 5: 458. https://doi.org/10.3390/photonics12050458
APA StyleXu, Z., & Wei, J. (2025). Machine Learning Applied to Optical Communication Systems. Photonics, 12(5), 458. https://doi.org/10.3390/photonics12050458