Visualization of High-Intensity Laser–Matter Interactions in Virtual Reality and Web Browser
Abstract
:1. Introduction
2. Methods
2.1. Data Representation
2.2. Visualization Workflow
2.3. User Interaction in VR and Non-VR Modes
2.4. Future Development
2.5. Related VR Approaches
3. Results
3.1. Ion Acceleration
3.1.1. Laser-Driven Proton Acceleration from Cryogenic Hydrogen Target
3.1.2. Laser-Driven Ion Acceleration from Plastic Target
3.1.3. Collimated Proton Beam via Double-Layer Target with Modulated Interface
3.1.4. Plasma Shutter for Heavy Ion Acceleration Enhancement
3.2. Electron Acceleration
3.2.1. Electromagnetic Electron Rings
3.2.2. Nanoparticle-Assisted Laser Wakefield Acceleration
3.3. -Flash Generation and Electron–Positron Pair Production
3.3.1. Collimated -Flash Emission Along the Target Surface
3.3.2. Electron–Positron Pair Cascade in a Laser-Electron Collision
3.3.3. Attosecond -Ray Flashes and Electron–Positron Pairs in Dyadic Laser Interaction with Microwire
3.4. Generation of Attosecond and Spiral Pulse
3.4.1. Coherent Attosecond Pulse Generation
3.4.2. Generations of Spiral Laser and Electron Beams
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
VBL | Virtual Beamline |
VR | Virtual Reality |
HMD | Head-Mounted Display |
PIC | Particle-in-cell |
AI | Artificial intelligence |
RPA | Radiation Pressure Acceleration |
TNSA | Target Normal Sheath Acceleration |
QED | Quantum electrodynamics |
Appendix A. Controls of VBL Application
References
- Danson, C.N.; Haefner, C.; Bromage, J.; Butcher, T.; Chanteloup, J.C.F.; Chowdhury, E.A.; Galvanauskas, A.; Gizzi, L.A.; Hein, J.; Hillier, D.I.; et al. Petawatt and exawatt class lasers worldwide. High Power Laser Sci. Eng. 2019, 7, e54. [Google Scholar] [CrossRef]
- Tajima, T.; Dawson, J.M. Laser Electron Accelerator. Phys. Rev. Lett. 1979, 43, 267–270. [Google Scholar] [CrossRef]
- Esarey, E.; Schroeder, C.B.; Leemans, W.P. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 2009, 81, 1229–1285. [Google Scholar] [CrossRef]
- Bulanov, S.V.; Esirkepov, T.; Khoroshkov, V.S.; Kuznetsov, A.V.; Pegoraro, F. Oncological hadrontherapy with laser ion accelerators. Phys. Lett. Sect. Gen. At. Solid State Phys. 2002, 299, 240–247. [Google Scholar] [CrossRef]
- Daido, H.; Nishiuchi, M.; Pirozhkov, A.S. Review of laser-driven ion sources and their applications. Rep. Prog. Phys. 2012, 75, 056401. [Google Scholar] [CrossRef]
- Macchi, A.; Borghesi, M.; Passoni, M. Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys. 2013, 85, 751–793. [Google Scholar] [CrossRef]
- Bulanov, S.V.; Wilkens, J.J.; Esirkepov, T.Z.; Korn, G.; Kraft, G.; Kraft, S.D.; Molls, M.; Khoroshkov, V.S. Laser ion acceleration for hadron therapy. Physics-Uspekhi 2014, 57, 1149–1179. [Google Scholar] [CrossRef]
- Passoni, M.; Arioli, F.M.; Cialfi, L.; Dellasega, D.; Fedeli, L.; Formenti, A.; Giovannelli, A.C.; Maffini, A.; Mirani, F.; Pazzaglia, A.; et al. Advanced laser-driven ion sources and their applications in materials and nuclear science. Plasma Phys. Control. Fusion 2019, 62, 014022. [Google Scholar] [CrossRef]
- Teubner, U.; Gibbon, P. High-order harmonics from laser-irradiated plasma surfaces. Rev. Mod. Phys. 2009, 81, 445. [Google Scholar] [CrossRef]
- Krausz, F.; Ivanov, M. Attosecond physics. Rev. Mod. Phys. 2009, 81, 163–234. [Google Scholar] [CrossRef]
- Gonsalves, A.J.; Nakamura, K.; Daniels, J.; Benedetti, C.; Pieronek, C.; de Raadt, T.C.H.; Steinke, S.; Bin, J.H.; Bulanov, S.S.; van Tilborg, J.; et al. Petawatt Laser Guiding and Electron Beam Acceleration to 8 GeV in a Laser-Heated Capillary Discharge Waveguide. Phys. Rev. Lett. 2019, 122, 084801. [Google Scholar] [CrossRef]
- Aniculaesei, C.; Ha, T.; Yoffe, S.; Labun, L.; Milton, S.; McCary, E.; Spinks, M.M.; Quevedo, H.J.; Labun, O.Z.; Sain, R.; et al. The acceleration of a high-charge electron bunch to 10 GeV in a 10-cm nanoparticle-assisted wakefield accelerator. Matter Radiat. Extrem. 2023, 9, 014001. [Google Scholar] [CrossRef]
- Ziegler, T.; Göthel, I.; Assenbaum, S.; Bernert, C.; Brack, F.E.; Cowan, T.E.; Dover, N.P.; Gaus, L.; Kluge, T.; Kraft, S.; et al. Laser-driven high-energy proton beams from cascaded acceleration regimes. Nat. Phys. 2024, 20, 1211–1216. [Google Scholar] [CrossRef]
- Roth, M.; Cowan, T.E.; Key, M.H.; Hatchett, S.P.; Brown, C.; Fountain, W.; Johnson, J.; Pennington, D.M.; Snavely, R.A.; Wilks, S.C.; et al. Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 2001, 86, 436–439. [Google Scholar] [CrossRef]
- Atzeni, S.; Temporal, M.; Honrubia, J.J. A first analysis of fast ignition of precompressed ICF fuel by laser-accelerated protons. Nucl. Fusion 2002, 42, L1. [Google Scholar] [CrossRef]
- Romagnani, L.; Fuchs, J.; Borghesi, M.; Antici, P.; Audebert, P.; Ceccherini, F.; Cowan, T.; Grismayer, T.; Kar, S.; Macchi, A.; et al. Dynamics of Electric Fields Driving the Laser Acceleration of Multi-MeV Protons. Phys. Rev. Lett. 2005, 95, 195001. [Google Scholar] [CrossRef]
- Albert, F.; Thomas, A.G.R. Applications of laser wakefield accelerator-based light sources. Plasma Phys. Control. Fusion 2016, 58, 103001. [Google Scholar] [CrossRef]
- Bulanov, S.V.; Esirkepov, T.Z.; Kando, M.; Pirozhkov, A.S.; Rosanov, N.N. Relativistic mirrors in plasmas. Novel results and perspectives. Physics-Uspekhi 2013, 56, 429. [Google Scholar] [CrossRef]
- Pirozhkov, A.S.; Esirkepov, T.Z.; Pikuz, T.A.; Faenov, A.Y.; Ogura, K.; Hayashi, Y.; Kotaki, H.; Ragozin, E.N.; Neely, D.; Kiriyama, H.; et al. Burst intensification by singularity emitting radiation in multi-stream flows. Sci. Rep. 2017, 7, 17968. [Google Scholar] [CrossRef]
- Lamač, M.; Mima, K.; Nejdl, J.; Chaulagain, U.; Bulanov, S.V. Anomalous Relativistic Emission from Self-Modulated Plasma Mirrors. Phys. Rev. Lett. 2023, 131, 205001. [Google Scholar] [CrossRef]
- Mourou, G.A.; Tajima, T.; Bulanov, S.V. Optics in the relativistic regime. Rev. Mod. Phys. 2006, 78, 309–371. [Google Scholar] [CrossRef]
- Marklund, M.; Shukla, P.K. Nonlinear collective effects in photon-photon and photon-plasma interactions. Rev. Mod. Phys. 2006, 78, 591–640. [Google Scholar] [CrossRef]
- Di Piazza, A.; Müller, C.; Hatsagortsyan, K.Z.; Keitel, C.H. Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys. 2012, 84, 1177–1228. [Google Scholar] [CrossRef]
- Gonoskov, A.; Blackburn, T.G.; Marklund, M.; Bulanov, S.S. Charged particle motion and radiation in strong electromagnetic fields. Rev. Mod. Phys. 2022, 94, 045001. [Google Scholar] [CrossRef]
- Burke, D.L.; Field, R.C.; Horton-Smith, G.; Spencer, J.E.; Walz, D.; Berridge, S.C.; Bugg, W.M.; Shmakov, K.; Weidemann, A.W.; Bula, C.; et al. Positron Production in Multiphoton Light-by-Light Scattering. Phys. Rev. Lett. 1997, 79, 1626–1629. [Google Scholar] [CrossRef]
- Ridgers, C.P.; Brady, C.S.; Duclous, R.; Kirk, J.G.; Bennett, K.; Arber, T.D.; Robinson, A.P.L.; Bell, A.R. Dense Electron-Positron Plasmas and Ultraintense γ rays from Laser-Irradiated Solids. Phys. Rev. Lett. 2012, 108, 165006. [Google Scholar] [CrossRef]
- Nakamura, T.; Koga, J.K.; Esirkepov, T.Z.; Kando, M.; Korn, G.; Bulanov, S.V. High-Power γ-Ray Flash Generation in Ultraintense Laser-Plasma Interactions. Phys. Rev. Lett. 2012, 108, 195001. [Google Scholar] [CrossRef]
- Lezhnin, K.V.; Sasorov, P.V.; Korn, G.; Bulanov, S.V. High power gamma flare generation in multi-petawatt laser interaction with tailored targets. Phys. Plasmas 2018, 25, 123105. [Google Scholar] [CrossRef]
- Vyskočil, J.; Gelfer, E.; Klimo, O. Inverse Compton scattering from solid targets irradiated by ultra-short laser pulses in the 1022–1023 W/cm2 regime. Plasma Phys. Control. Fusion 2020, 62, 064002. [Google Scholar] [CrossRef]
- Hadjisolomou, P.; Jeong, T.M.; Kolenaty, D.; Macleod, A.J.; Olšovcová, V.; Versaci, R.; Ridgers, C.P.; Bulanov, S.V. Gamma-flash generation in multi-petawatt laser–matter interactions. Phys. Plasmas 2023, 30, 093103. [Google Scholar] [CrossRef]
- Pirozhkov, A.S.; Sagisaka, A.; Ogura, K.; Vishnyakov, E.A.; Shatokhin, A.N.; Armstrong, C.D.; Esirkepov, T.Z.; Izquierdo, B.G.; Pikuz, T.A.; Hadjisolomou, P.; et al. Demonstration of The Brightest Nano-size Gamma Source. arXiv 2024, arXiv:2410.06537. [Google Scholar] [CrossRef]
- Vshivkov, V.A.; Naumova, N.M.; Pegoraro, F.; Bulanov, S.V. Nonlinear electrodynamics of the interaction of ultra-intense laser pulses with a thin foil. Phys. Plasmas 1998, 5, 2727–2741. [Google Scholar] [CrossRef]
- Matys, M.; Bulanov, S.V.; Kucharik, M.; Jirka, M.; Nikl, J.; Kecova, M.; Proska, J.; Psikal, J.; Korn, G.; Klimo, O. Design of plasma shutters for improved heavy ion acceleration by ultra-intense laser pulses. New J. Phys. 2022, 24, 113046. [Google Scholar] [CrossRef]
- Jirka, M.; Klimo, O.; Matys, M. Relativistic plasma aperture for laser intensity enhancement. Phys. Rev. Res. 2021, 3, 033175. [Google Scholar] [CrossRef]
- Dover, N.P.; Ziegler, T.; Assenbaum, S.; Bernert, C.; Bock, S.; Brack, F.E.; Cowan, T.E.; Ditter, E.J.; Garten, M.; Gaus, L.; et al. Enhanced ion acceleration from transparency-driven foils demonstrated at two ultraintense laser facilities. Light Sci. Appl. 2023, 12, 71. [Google Scholar] [CrossRef]
- Li, C.; Wang, Y.; Chen, Z.; Kang, Y.; Sun, M.; Qin, L.; Eliasson, B.; Yan, X. Generation of 100-TW half-cycle zeptosecond x-ray pulses in the cascaded regime. Phys. Rev. Appl. 2025, 23, 024047. [Google Scholar] [CrossRef]
- Kim, K.; Carlis, J.V.; Keefe, D.F. Comparison techniques utilized in spatial 3D and 4D data visualizations: A survey and future directions. Comput. Graph. 2017, 67, 138–147. [Google Scholar] [CrossRef]
- Igarashi, H.; Kido, D.; Ishii, Y.; Niwa, Y.; Okamoto, A.; Kimura, M. Visualization of four-dimensional X-ray absorption fine structure data using a virtual reality system. J. Synchrotron Radiat. 2025, 32, 162–170. [Google Scholar] [CrossRef]
- Danielova, M.; Janecka, P.; Grosz, J.; Holy, A. Interactive 3D Visualizations of Laser Plasma Experiments on the Web and in VR. In Proceedings of the EuroVis 2019—Posters, Porto, Portugal, 3–7 June 2019; The Eurographics Association: Eindhoven, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Verdelho Trindade, N.; Amaro, Ó.; Brás, D.; Gonçalves, D.; Madeiras Pereira, J.; Ferreira, A. Visualizing Plasma Physics Simulations in Immersive Environments. In Proceedings of the 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications—IVAPP, INSTICC, Rome, Italy, 27–29 February 2024; SciTePress: Setúbal, Portugal, 2024; pp. 645–652. [Google Scholar] [CrossRef]
- WebGL. Available online: https://www.khronos.org/webgl/ (accessed on 27 April 2025).
- WebXR. Available online: https://immersive-web.github.io/ (accessed on 27 April 2025).
- Kelling, J.; Bolea, V.; Bussmann, M.; Checkervarty, A.; Debus, A.; Ebert, J.; Eisenhauer, G.; Gutta, V.; Kesselheim, S.; Klasky, S.; et al. The Artificial Scientist—In-transit Machine Learning of Plasma Simulations. arXiv 2025, arXiv:2501.03383. [Google Scholar] [CrossRef]
- Virtual Beamline. Available online: https://vbl.eli-beams.eu/ (accessed on 27 April 2025).
- D3.js. Available online: https://d3js.org/ (accessed on 27 April 2025).
- WebVR. Available online: https://developer.mozilla.org/en-US/docs/Web/API/WebVR_API (accessed on 27 April 2025).
- Derouillat, J.; Beck, A.; Pérez, F.; Vinci, T.; Chiaramello, M.; Grassi, A.; Flé, M.; Bouchard, G.; Plotnikov, I.; Aunai, N.; et al. Smilei: A collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation. Comput. Phys. Commun. 2018, 222, 351–373. [Google Scholar] [CrossRef]
- Fonseca, R.A.; Silva, L.O.; Tsung, F.S.; Decyk, V.K.; Lu, W.; Ren, C.; Mori, W.B.; Deng, S.; Lee, S.; Katsouleas, T.; et al. OSIRIS: A Three-Dimensional, Fully Relativistic Particle in Cell Code for Modeling Plasma Based Accelerators. In Proceedings of the Computational Science—ICCS 2002, Amsterdam, The Netherlands, 21–24 April 2002; Sloot, P.M.A., Hoekstra, A.G., Tan, C.J.K., Dongarra, J.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 342–351. [Google Scholar] [CrossRef]
- Arber, T.D.; Bennett, K.; Brady, C.S.; Lawrence-Douglas, A.; Ramsay, M.G.; Sircombe, N.J.; Gillies, P.; Evans, R.G.; Schmitz, H.; Bell, A.R.; et al. Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Phys. Control. Fusion 2015, 57, 113001. [Google Scholar] [CrossRef]
- Miller, G. Efficient algorithms for local and global accessibility shading. In Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, Orlando, FL, USA, 24–29 July 1994; ACM: New York, NY, USA, 1994; pp. 319–326. [Google Scholar] [CrossRef]
- dat.GUI. Available online: https://github.com/dataarts/dat.gui (accessed on 27 April 2025).
- Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 1982, 79, 2554–2558. [Google Scholar] [CrossRef] [PubMed]
- Tajima, T. Computational Plasma Physics: With Applications to Fusion and Astrophysics; Frontiers in Physics; Addison-Wesley: Reading, MA, USA, 1989; Volume 72. [Google Scholar]
- Hernandez, J.V.; Tajima, T.; Horton, W. Neural net forecasting for geomagnetic activity. Geophys. Res. Lett. 1993, 20, 2707–2710. [Google Scholar] [CrossRef]
- Shalloo, R.J.; Dann, S.J.D.; Gruse, J.N.; Underwood, C.I.D.; Antoine, A.F.; Arran, C.; Backhouse, M.; Baird, C.D.; Balcazar, M.D.; Bourgeois, N.; et al. Automation and control of laser wakefield accelerators using Bayesian optimization. Nat. Commun. 2020, 11, 6355. [Google Scholar] [CrossRef]
- Jalas, S.; Kirchen, M.; Messner, P.; Winkler, P.; Hübner, L.; Dirkwinkel, J.; Schnepp, M.; Lehe, R.; Maier, A.R. Bayesian Optimization of a Laser-Plasma Accelerator. Phys. Rev. Lett. 2021, 126, 104801. [Google Scholar] [CrossRef]
- Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-informed machine learning. Nat. Rev. Phys. 2021, 3, 422–440. [Google Scholar] [CrossRef]
- Döpp, A.; Eberle, C.; Howard, S.; Irshad, F.; Lin, J.; Streeter, M. Data-driven science and machine learning methods in laser–plasma physics. High Power Laser Sci. Eng. 2023, 11, e55. [Google Scholar] [CrossRef]
- Feister, S.; Cassou, K.; Dann, S.; Döpp, A.; Gauron, P.; Gonsalves, A.J.; Joglekar, A.; Marshall, V.; Neveu, O.; Schlenvoigt, H.P.; et al. Control systems and data management for high-power laser facilities. High Power Laser Sci. Eng. 2023, 11, e56. [Google Scholar] [CrossRef]
- Goodman, J.; King, M.; Dolier, E.J.; Wilson, R.; Gray, R.J.; McKenna, P. Optimization and control of synchrotron emission in ultraintense laser–solid interactions using machine learning. High Power Laser Sci. Eng. 2023, 11, e34. [Google Scholar] [CrossRef]
- Loughran, B.; Streeter, M.J.V.; Ahmed, H.; Astbury, S.; Balcazar, M.; Borghesi, M.; Bourgeois, N.; Curry, C.B.; Dann, S.J.D.; DiIorio, S.; et al. Automated control and optimization of laser-driven ion acceleration. High Power Laser Sci. Eng. 2023, 11, e35. [Google Scholar] [CrossRef]
- Ohtani, H.; Kageyama, A.; Tamura, Y.; Ishiguro, S.; Shohji, M. Integrated Visualization of Simulation Results and Experimental Devices in Virtual-Reality Space. Plasma Fusion Res. 2011, 6, 2406027. [Google Scholar] [CrossRef]
- Ohtani, H.; Shoji, M.; Ohno, N.; Suzuki, Y.; Ishiguro, S.; Kageyama, A.; Tamura, Y. Visualization of Dust Particle Data with Plasma Simulation Results Using Virtual-Reality System. Contrib. Plasma Phys. 2016, 56, 692–697. [Google Scholar] [CrossRef]
- Cruz-Neira, C.; Sandin, D.J.; DeFanti, T.A. Surround-screen projection-based virtual reality. In Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, Anaheim, CA, USA, 2–6 August 1993; pp. 135–142. [Google Scholar] [CrossRef]
- Ohtani, H.; Masuzaki, S.; Ogawa, K.; Ishiguro, S. Virtual-reality visualization of loss points of 1 MeV tritons in the Large Helical Device, LHD. J. Vis. 2021, 25, 281–292. [Google Scholar] [CrossRef]
- Ohno, N.; Kageyama, A. VOIR: Virtual Reality Visualization Software for Large-Scale Simulations. Plasma Fusion Res. 2024, 19, 1401024. [Google Scholar] [CrossRef]
- Foss, G.; Solis, A.; Bhadsavle, S.; Horton, W.; Leonard, L. Plasma Simulation Data Through the Hololens. In Proceedings of the Practice and Experience on Advanced Research Computing, Pittsburgh, PA, USA, 22–26 July 2018; pp. 1–2. [Google Scholar] [CrossRef]
- Mathur, M.; Brozovich, J.M.; Rausch, M.K. A brief note on building augmented reality models for scientific visualization. Finite Elem. Anal. Des. 2023, 213, 103851. [Google Scholar] [CrossRef]
- Laser-Driven Proton Acceleration from Cryogenic Hydrogen Target. Available online: https://vbl.eli-beams.eu/mm-track/ (accessed on 27 April 2025).
- Laser-Driven Ion Acceleration from Plastic Target. Available online: https://vbl.eli-beams.eu/mz-elimaia/ (accessed on 27 April 2025).
- Collimated Proton Beam via Double-Layer Target with Modulated Interface. Available online: https://vbl.eli-beams.eu/mm-bunch/ (accessed on 27 April 2025).
- Plasma Shutter for Heavy Ion Acceleration Enhancement. Available online: https://vbl.eli-beams.eu/mm-shutter/ (accessed on 27 April 2025).
- Electromagnetic-Electron Rings. Available online: https://vbl.eli-beams.eu/pv-rings/ (accessed on 27 April 2025).
- Nanoparticle-Assisted Laser Wakefield Acceleration. Available online: https://vbl.eli-beams.eu/as-lwfa/ (accessed on 27 April 2025).
- Collimated γ-Flash Emission Along the Target Surface. Available online: https://vbl.eli-beams.eu/mm-gamma/ (accessed on 27 April 2025).
- Electron-Positron Pair Cascade in a Laser-Electron Collision. Available online: https://vbl.eli-beams.eu/mj-colliding/ (accessed on 27 April 2025).
- Attosecond Gamma-Ray Flashes and Electron-Positron Pairs in Dyadic Laser Interaction with Micro-Wire. Available online: https://vbl.eli-beams.eu/ph-wire/ (accessed on 27 April 2025).
- Coherent Attosecond Pulse Generation. Available online: https://vbl.eli-beams.eu/ml-atto/ (accessed on 27 April 2025).
- Generations of Spiral Laser and Electron Beams. Available online: https://vbl.eli-beams.eu/mm-spiral/ (accessed on 27 April 2025).
- Tajima, T. Prospect for compact medical laser accelerators. J. Jpn. Soc. Ther. Radiol. Oncol. 1997, 9, 83–85. [Google Scholar]
- Cirrone, G.; Manti, L.; Margarone, D.; Petringa, G.; Giuffrida, L.; Minopoli, A.; Picciotto, A.; Russo, G.; Cammarata, F.; Pisciotta, P.; et al. First experimental proof of Proton Boron Capture Therapy (PBCT) to enhance protontherapy effectiveness. Sci. Rep. 2018, 8, 1141. [Google Scholar] [CrossRef]
- Istokskaia, V.; Tosca, M.; Giuffrida, L.; Psikal, J.; Grepl, F.; Kantarelou, V.; Stancek, S.; Di Siena, S.; Hadjikyriacou, A.; McIlvenny, A.; et al. A multi-MeV alpha particle source via proton-boron fusion driven by a 10-GW tabletop laser. Commun. Phys. 2023, 6, 27. [Google Scholar] [CrossRef]
- Nishiuchi, M.; Sakaki, H.; Esirkepov, T.Z.; Nishio, K.; Pikuz, T.A.; Faenov, A.Y.; Skobelev, I.Y.; Orlandi, R.; Sako, H.; Pirozhkov, A.S.; et al. Acceleration of highly charged GeV Fe ions from a low-Z substrate by intense femtosecond laser. Phys. Plasmas 2015, 22, 033107. [Google Scholar] [CrossRef]
- Norreys, P.A.; Fews, A.P.; Beg, F.N.; Bell, A.R.; Dangor, A.E.; Lee, P.; Nelson, M.B.; Schmidt, H.; Tatarakis, M.; Cable, M.D. Neutron production from picosecond laser irradiation of deuterated targets at intensities of 145°. Plasma Phys. Control. Fusion 1998, 40, 175. [Google Scholar] [CrossRef]
- Horný, V.; Chen, S.N.; Davoine, X.; Lelasseux, V.; Gremillet, L.; Fuchs, J. High-flux neutron generation by laser-accelerated ions from single- and double-layer targets. Sci. Rep. 2022, 12, 19767. [Google Scholar] [CrossRef] [PubMed]
- Borghesi, M.; Bigongiari, A.; Kar, S.; Macchi, A.; Romagnani, L.; Audebert, P.; Fuchs, J.; Toncian, T.; Willi, O.; Bulanov, S.; et al. Laser-driven proton acceleration: Source optimization and radiographic applications. Plasma Phys. Control. Fusion 2008, 50, 124040. [Google Scholar] [CrossRef]
- Mirani, F.; Maffini, A.; Casamichiela, F.; Pazzaglia, A.; Formenti, A.; Dellasega, D.; Russo, V.; Vavassori, D.; Bortot, D.; Huault, M.; et al. Integrated quantitative PIXE analysis and EDX spectroscopy using a laser-driven particle source. Sci. Adv. 2021, 7, eabc8660. [Google Scholar] [CrossRef] [PubMed]
- Barberio, M.; Antici, P. Laser-PIXE using laser-accelerated proton beams. Sci. Rep. 2019, 9, 6855. [Google Scholar] [CrossRef]
- Passoni, M.; Fedeli, L.; Mirani, F. Superintense laser-driven ion beam analysis. Sci. Rep. 2019, 9, 9202. [Google Scholar] [CrossRef]
- Higginson, A.; Gray, R.J.; King, M.; Dance, R.J.; Williamson, S.D.; Butler, N.M.; Wilson, R.; Capdessus, R.; Armstrong, C.; Green, J.S.; et al. Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme. Nat. Commun. 2018, 9, 724. [Google Scholar] [CrossRef]
- Rehwald, M.; Assenbaum, S.; Bernert, C.; Brack, F.E.; Bussmann, M.; Cowan, T.E.; Curry, C.B.; Fiuza, F.; Garten, M.; Gaus, L.; et al. Ultra-short pulse laser acceleration of protons to 80 MeV from cryogenic hydrogen jets tailored to near-critical density. Nat. Commun. 2023, 14, 4009. [Google Scholar] [CrossRef]
- Esirkepov, T.; Borghesi, M.; Bulanov, S.V.; Mourou, G.; Tajima, T. Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett. 2004, 92, 175003. [Google Scholar] [CrossRef]
- Wilks, S.C.; Langdon, A.B.; Cowan, T.E.; Roth, M.; Singh, M.; Hatchett, S.; Key, M.H.; Pennington, D.; MacKinnon, A.; Snavely, R.A. Energetic proton generation in ultra-intense laser–solid interactions. Phys. Plasmas 2001, 8, 542–549. [Google Scholar] [CrossRef]
- Snavely, R.A.; Key, M.H.; Hatchett, S.P.; Cowan, T.E.; Roth, M.; Phillips, T.W.; Stoyer, M.A.; Henry, E.A.; Sangster, T.C.; Singh, M.S.; et al. Intense High-Energy Proton Beams from Petawatt-Laser Irradiation of Solids. Phys. Rev. Lett. 2000, 85, 2945–2948. [Google Scholar] [CrossRef]
- Psikal, J.; Matys, M. Dominance of hole-boring radiation pressure acceleration regime with thin ribbon of ionized solid hydrogen. Plasma Phys. Control. Fusion 2018, 60, 044003. [Google Scholar] [CrossRef]
- Matys, M.; Psikal, J.; Nishihara, K.; Klimo, O.; Jirka, M.; Valenta, P.; Bulanov, S.V. High-Quality Laser-Accelerated Ion Beams from Structured Targets. Photonics 2023, 10, 61. [Google Scholar] [CrossRef]
- Garcia, S.; Chatain, D.; Perin, J. Continuous production of a thin ribbon of solid hydrogen. Laser Part. Beams 2014, 32, 569–575. [Google Scholar] [CrossRef]
- Margarone, D.; Velyhan, A.; Dostal, J.; Ullschmied, J.; Perin, J.P.; Chatain, D.; Garcia, S.; Bonnay, P.; Pisarczyk, T.; Dudzak, R.; et al. Proton acceleration driven by a nanosecond laser from a cryogenic thin solid-hydrogen ribbon. Phys. Rev. X 2016, 6, 041030. [Google Scholar] [CrossRef]
- Polz, J.; Robinson, A.P.L.; Kalinin, A.; Becker, G.A.; Fraga, R.A.C.; Hellwing, M.; Hornung, M.; Keppler, S.; Kessler, A.; Klöpfel, D.; et al. Efficient Laser-Driven Proton Acceleration from a Cryogenic Solid Hydrogen Target. Sci. Rep. 2019, 9, 16534. [Google Scholar] [CrossRef]
- Chagovets, T.; Viswanathan, J.; Tryus, M.; Grepl, F.; Velyhan, A.; Stancek, S.; Giuffrida, L.; Schillaci, F.; Cupal, J.; Koubikova, L.; et al. A Cryogenic Hydrogen Ribbon for Laser Driven Proton Acceleration at Hz-Level Repetition Rate. Front. Phys. 2022, 9, 754423. [Google Scholar] [CrossRef]
- Sistrunk, E.; Spinka, T.; Bayramian, A.; Betts, S.; Bopp, R.; Buck, S.; Charron, K.; Cupal, J.; Deri, R.; Drouin, M.; et al. All diode-pumped, high-repetition-rate advanced petawatt laser system (HAPLS). In Proceedings of the CLEO: Science and Innovations, San Jose, CA, USA, 14–19 May 2017; Optica Publishing Group: Washington, DC, USA, 2017; p. STh1L–2. [Google Scholar] [CrossRef]
- Haefner, C.; Bayramian, A.; Betts, S.; Bopp, R.; Buck, S.; Cupal, J.; Drouin, M.; Erlandson, A.; Horáček, J.; Horner, J.; et al. High average power, diode pumped petawatt laser systems: A new generation of lasers enabling precision science and commercial applications. In Proceedings of the Research Using Extreme Light: Entering New Frontiers with Petawatt-Class Lasers III, Prague, Czech Republic, 24–26 April 2017; SPIE: Bellingham, WA, USA, 2017; Volume 10241, p. 1024102. [Google Scholar] [CrossRef]
- The L3 Laser System Called HAPLS (The High-Repetition-Rate Advanced Petawatt Laser System). Available online: https://up.eli-laser.eu/laser/l3-1101562735 (accessed on 27 April 2025).
- Bechet, S.; Versaci, R.; Rollet, S.; Olsovcova, V.; Fajstavr, A.; Zakova, M.; Margarone, D. Radiation protection of a proton beamline at ELI-Beamlines. J. Instrum. 2016, 11, C12019. [Google Scholar] [CrossRef]
- Margarone, D.; Cirrone, G.P.; Cuttone, G.; Amico, A.; Andò, L.; Borghesi, M.; Bulanov, S.S.; Bulanov, S.V.; Chatain, D.; Fajstavr, A.; et al. ELIMAIA: A laser-driven ion accelerator for multidisciplinary applications. Quantum Beam Sci. 2018, 2, 8. [Google Scholar] [CrossRef]
- ELIMAIA User Beamline. Available online: https://up.eli-laser.eu/equipment/elimaia-854589514 (accessed on 27 April 2025).
- Schillaci, F.; Cirrone, G.; Cuttone, G.; Maggiore, M.; Andó, L.; Amato, A.; Costa, M.; Gallo, G.; Korn, G.; Larosa, G.; et al. Design of the ELIMAIA ion collection system. J. Instrum. 2015, 10, T12001. [Google Scholar] [CrossRef]
- Margarone, D.; Klimo, O.; Kim, I.; Prokupek, J.; Limpouch, J.; Jeong, T.; Mocek, T.; Pšikal, J.; Kim, H.; Proška, J.; et al. Laser-driven proton acceleration enhancement by nanostructured foils. Phys. Rev. Lett. 2012, 109, 234801. [Google Scholar] [CrossRef]
- Margarone, D.; Kim, I.J.; Psikal, J.; Kaufman, J.; Mocek, T.; Choi, I.W.; Stolcova, L.; Proska, J.; Choukourov, A.; Melnichuk, I.; et al. Laser-driven high-energy proton beam with homogeneous spatial profile from a nanosphere target. Phys. Rev. Spec. Top.-Accel. Beams 2015, 18, 071304. [Google Scholar] [CrossRef]
- Zakova, M.G.; Psikal, J.; Schillaci, F.; Margarone, D. Improving laser-accelerated proton beam divergence by electric and magnetic fields induced in flat channel-like targets. Plasma Phys. Control. Fusion 2021, 63, 085005. [Google Scholar] [CrossRef]
- Matys, M.; Nishihara, K.; Kecova, M.; Psikal, J.; Korn, G.; Bulanov, S.V. Laser-driven generation of collimated quasi-monoenergetic proton beam using double-layer target with modulated interface. High Energy Density Phys. 2020, 36, 100844. [Google Scholar] [CrossRef]
- Rayleigh, L. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc. 1882, 14, 170–177. [Google Scholar] [CrossRef]
- Taylor, G. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1950, 201, 192–196. [Google Scholar] [CrossRef]
- Richtmyer, R.D. Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math. 1960, 13, 297–319. [Google Scholar] [CrossRef]
- Meshkov, E.E. Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn. 1969, 4, 101–104. [Google Scholar] [CrossRef]
- Wouchuk, J.G.; Nishihara, K. Linear perturbation growth at a shocked interface. Phys. Plasmas 1996, 3, 3761–3776. [Google Scholar] [CrossRef]
- Wouchuk, J.G.; Nishihara, K. Asymptotic growth in the linear Richtmyer-Meshkov instability. Phys. Plasmas 1997, 4, 1028–1038. [Google Scholar] [CrossRef]
- Nishihara, K.; Wouchuk, J.G.; Matsuoka, C.; Ishizaki, R.; Zhakhovsky, V.V. Richtmyer-Meshkov instability: Theory of linear and nonlinear evolution. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 1769–1807. [Google Scholar] [CrossRef]
- Mohseni, F.; Mendoza, M.; Succi, S.; Herrmann, H.J. Relativistic effects on the Richtmyer-Meshkov instability. Phys. Rev. D—Part. Fields Gravit. Cosmol. 2014, 90, 125028. [Google Scholar] [CrossRef]
- Matsuoka, C.; Nishihara, K.; Sano, T. Nonlinear Dynamics of Non-uniform Current-Vortex Sheets in Magnetohydrodynamic Flows. J. Nonlinear Sci. 2017, 27, 531–572. [Google Scholar] [CrossRef]
- Zhou, Y. Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I. Phys. Rep. 2017, 720–722, 1–136. [Google Scholar] [CrossRef]
- Zhou, Y.; Clark, T.T.; Clark, D.S.; Gail Glendinning, S.; Aaron Skinner, M.; Huntington, C.M.; Hurricane, O.A.; Dimits, A.M.; Remington, B.A. Turbulent mixing and transition criteria of flows induced by hydrodynamic instabilities. Phys. Plasmas 2019, 26, 080901. [Google Scholar] [CrossRef]
- Reed, S.A.; Matsuoka, T.; Bulanov, S.; Tampo, M.; Chvykov, V.; Kalintchenko, G.; Rousseau, P.; Yanovsky, V.; Kodama, R.; Litzenberg, D.W.; et al. Relativistic plasma shutter for ultraintense laser pulses. Appl. Phys. Lett. 2009, 94, 201117. [Google Scholar] [CrossRef]
- Palaniyappan, S.; Hegelich, B.M.; Wu, H.C.; Jung, D.; Gautier, D.C.; Yin, L.; Albright, B.J.; Johnson, R.P.; Shimada, T.; Letzring, S.; et al. Dynamics of relativistic transparency and optical shuttering in expanding overdense plasmas. Nat. Phys. 2012, 8, 763–769. [Google Scholar] [CrossRef]
- Wei, W.Q.; Yuan, X.H.; Fang, Y.; Ge, Z.Y.; Ge, X.L.; Yang, S.; Li, Y.F.; Liao, G.Q.; Zhang, Z.; Liu, F.; et al. Plasma optical shutter in ultraintense laser-foil interaction. Phys. Plasmas 2017, 24, 113111. [Google Scholar] [CrossRef]
- Wei, W.Q.; Wang, Y.; Ge, X.L.; Deng, Y.Q.; Zhang, S.Z.; Wan, F.; Li, J.X.; Zhao, Y.T.; Yuan, X.H. Dynamics and manipulation of ultrashort laser pulses via plasma shutter. Phys. Plasmas 2025, 32, 013109. [Google Scholar] [CrossRef]
- Gonzalez-Izquierdo, B.; Gray, R.; King, M.; Dance, R.; Wilson, R.; McCreadie, J.; Butler, N.; Capdessus, R.; Hawkes, S.; Green, J.; et al. Optically controlled dense current structures driven by relativistic plasma aperture-induced diffraction. Nat. Phys. 2016, 12, 505–512. [Google Scholar] [CrossRef]
- Gonzalez-Izquierdo, B.; King, M.; Gray, R.; Wilson, R.; Dance, R.; Powell, H.; Maclellan, D.; McCreadie, J.; Butler, N.; Hawkes, S.; et al. Towards optical polarization control of laser-driven proton acceleration in foils undergoing relativistic transparency. Nat. Commun. 2016, 7, 12891. [Google Scholar] [CrossRef]
- Nishiuchi, M.; Dover, N.P.; Hata, M.; Sakaki, H.; Kondo, K.; Lowe, H.F.; Miyahara, T.; Kiriyama, H.; Koga, J.K.; Iwata, N.; et al. Dynamics of laser-driven heavy-ion acceleration clarified by ion charge states. Phys. Rev. Res. 2020, 2, 033081. [Google Scholar] [CrossRef]
- Kiriyama, H.; Miyasaka, Y.; Kon, A.; Nishiuchi, M.; Sagisaka, A.; Sasao, H.; Pirozhkov, A.S.; Fukuda, Y.; Ogura, K.; Kondo, K.; et al. Laser Output Performance and Temporal Quality Enhancement at the J-KAREN-P Petawatt Laser Facility. Photonics 2023, 10, 997. [Google Scholar] [CrossRef]
- Corde, S.; Phuoc, K.T.; Lambert, G.; Fitour, R.; Malka, V.; Rousse, A.; Beck, A.; Lefebvre, E. Femtosecond x rays from laser-plasma accelerators. Rev. Mod. Phys. 2013, 85, 1–48. [Google Scholar] [CrossRef]
- Albert, F.; Thomas, A.G.R.; Mangles, S.P.D.; Banerjee, S.; Corde, S.; Flacco, A.; Litos, M.; Neely, D.; Vieira, J.; Najmudin, Z.; et al. Laser wakefield accelerator based light sources: Potential applications and requirements. Plasma Phys. Control. Fusion 2014, 56, 084015. [Google Scholar] [CrossRef]
- Yu, T.P.; Liu, K.; Zhao, J.; Zhu, X.L.; Lu, Y.; Cao, Y.; Zhang, H.; Shao, F.Q.; Sheng, Z.M. Bright X/γ-ray emission and lepton pair production by strong laser fields: A review. Rev. Mod. Plasma Phys. 2024, 8, 24. [Google Scholar] [CrossRef]
- Pirozhkov, A.S.; Kando, M.; Ahmed, H.; Fukuda, Y.; Kando, M.; Kiriyama, H.; Sagisaka, A.; Kawase, K.; Kotaki, H.; Hayashi, Y.; et al. Soft-X-Ray Harmonic Comb from Relativistic Electron Spikes. Phys. Rev. Lett. 2012, 108, 135004. [Google Scholar] [CrossRef]
- Tabak, M.; Hammer, J.; Glinsky, M.E.; Kruer, W.L.; Wilks, S.C.; Woodworth, J.; Campbell, E.M.; Perry, M.D.; Mason, R.J. Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1994, 1, 1626–1634. [Google Scholar] [CrossRef]
- Valenta, P.; Grittani, G.M.; Lazzarini, C.M.; Klimo, O.; Bulanov, S.V. On the electromagnetic-electron rings originating from the interaction of high-power short-pulse laser and underdense plasma. Phys. Plasmas 2021, 28, 122104. [Google Scholar] [CrossRef]
- Krushelnick, K.; Ting, A.; Moore, C.I.; Burris, H.R.; Esarey, E.; Sprangle, P.; Baine, M. Plasma Channel Formation and Guiding during High Intensity Short Pulse Laser Plasma Experiments. Phys. Rev. Lett. 1997, 78, 4047–4050. [Google Scholar] [CrossRef]
- Kaganovich, D.; Gordon, D.F.; Ting, A. Observation of Large-Angle Quasimonoenergetic Electrons from a Laser Wakefield. Phys. Rev. Lett. 2008, 100, 215002. [Google Scholar] [CrossRef]
- Pollock, B.B.; Tsung, F.S.; Albert, F.; Shaw, J.L.; Clayton, C.E.; Davidson, A.; Lemos, N.; Marsh, K.A.; Pak, A.; Ralph, J.E.; et al. Formation of Ultrarelativistic Electron Rings from a Laser-Wakefield Accelerator. Phys. Rev. Lett. 2015, 115, 055004. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Brunetti, E.; Gil, D.R.; Welsh, G.H.; Li, F.Y.; Cipiccia, S.; Ersfeld, B.; Grant, D.W.; Grant, P.A.; Islam, M.R.; et al. Three electron beams from a laser-plasma wakefield accelerator and the energy apportioning question. Sci. Rep. 2017, 7, 43910. [Google Scholar] [CrossRef] [PubMed]
- Behm, K.; Hussein, A.; Zhao, T.Z.; Dann, S.; Hou, B.X.; Yanovsky, V.; Nees, J.; Maksimchuk, A.; Schumaker, W.; Thomas, A.G.R.; et al. Measurements of electron beam ring structures from laser wakefield accelerators. Plasma Phys. Control. Fusion 2019, 61, 065012. [Google Scholar] [CrossRef]
- Salehi, F.; Le, M.; Railing, L.; Kolesik, M.; Milchberg, H.M. Laser-Accelerated, Low-Divergence 15-MeV Quasimonoenergetic Electron Bunches at 1 kHz. Phys. Rev. X 2021, 11, 021055. [Google Scholar] [CrossRef]
- Aniculaesei, C.; Pathak, V.B.; Oh, K.H.; Singh, P.K.; Lee, B.R.; Hojbota, C.I.; Pak, T.G.; Brunetti, E.; Yoo, B.J.; Sung, J.H.; et al. Proof-of-Principle Experiment for Nanoparticle-Assisted Laser Wakefield Electron Acceleration. Phys. Rev. Appl. 2019, 12, 044041. [Google Scholar] [CrossRef]
- Xu, J.; Bae, L.; Ezzat, M.; Kim, H.T.; Yang, J.M.; Lee, S.H.; Yoon, J.W.; Sung, J.H.; Lee, S.K.; Ji, L.; et al. Nanoparticle-insertion scheme to decouple electron injection from laser evolution in laser wakefield acceleration. Sci. Rep. 2022, 12, 11128. [Google Scholar] [CrossRef]
- Lazzarini, C.M.; Grittani, G.M.; Valenta, P.; Zymak, I.; Antipenkov, R.; Chaulagain, U.; Goncalves, L.V.N.; Grenfell, A.; Lamač, M.; Lorenz, S.; et al. Ultrarelativistic electron beams accelerated by terawatt scalable kHz laser. Phys. Plasmas 2024, 31, 030703. [Google Scholar] [CrossRef]
- Eliasson, B.; Liu, C.S. An electromagnetic gamma-ray free electron laser. J. Plasma Phys. 2013, 79, 995–998. [Google Scholar] [CrossRef]
- Ledingham, K.W.D.; Spencer, I.; McCanny, T.; Singhal, R.P.; Santala, M.I.K.; Clark, E.; Watts, I.; Beg, F.N.; Zepf, M.; Krushelnick, K.; et al. Photonuclear Physics when a Multiterawatt Laser Pulse Interacts with Solid Targets. Phys. Rev. Lett. 2000, 84, 899–902. [Google Scholar] [CrossRef]
- Nedorezov, V.G.; Turinge, A.A.; Shatunov, Y.M. Photonuclear experiments with Compton-backscattered gamma beams. Physics-Uspekhi 2004, 47, 341. [Google Scholar] [CrossRef]
- Kolenatý, D.; Hadjisolomou, P.; Versaci, R.; Jeong, T.M.; Valenta, P.; Olšovcová, V.; Bulanov, S.V. Electron-positron pairs and radioactive nuclei production by irradiation of high-Z target with γ-photon flash generated by an ultra-intense laser in the λ3 regime. Phys. Rev. Res. 2022, 4, 023124. [Google Scholar] [CrossRef]
- Pomerantz, I.; McCary, E.; Meadows, A.R.; Arefiev, A.; Bernstein, A.C.; Chester, C.; Cortez, J.; Donovan, M.E.; Dyer, G.; Gaul, E.W.; et al. Ultrashort Pulsed Neutron Source. Phys. Rev. Lett. 2014, 113, 184801. [Google Scholar] [CrossRef] [PubMed]
- Cowan, T.E.; Hunt, A.W.; Phillips, T.W.; Wilks, S.C.; Perry, M.D.; Brown, C.; Fountain, W.; Hatchett, S.; Johnson, J.; Key, M.H.; et al. Photonuclear Fission from High Energy Electrons from Ultraintense Laser-Solid Interactions. Phys. Rev. Lett. 2000, 84, 903–906. [Google Scholar] [CrossRef] [PubMed]
- Schwoerer, H.; Ewald, F.; Sauerbrey, R.; Galy, J.; Magill, J.; Rondinella, V.; Schenkel, R.; Butz, T. Fission of actinides using a tabletop laser. Europhys. Lett. 2003, 61, 47. [Google Scholar] [CrossRef]
- Weeks, K.J.; Litvinenko, V.N.; Madey, J.M.J. The Compton backscattering process and radiotherapy. Med. Phys. 1997, 24, 417–423. [Google Scholar] [CrossRef]
- Antonelli, L.; Atzeni, S.; Schiavi, A.; Baton, S.D.; Brambrink, E.; Koenig, M.; Rousseaux, C.; Richetta, M.; Batani, D.; Forestier-Colleoni, P.; et al. Laser-driven shock waves studied by x-ray radiography. Phys. Rev. E 2017, 95, 063205. [Google Scholar] [CrossRef]
- Ujeniuc, S.; Suvaila, R. Towards quantum technologies with gamma photons. EPJ Quantum Technol. 2024, 11, 39. [Google Scholar] [CrossRef]
- Bulanov, S.V.; Esirkepov, T.Z.; Kando, M.; Koga, J.; Kondo, K.; Korn, G. On the problems of relativistic laboratory astrophysics and fundamental physics with super powerful lasers. Plasma Phys. Rep. 2015, 41, 1–51. [Google Scholar] [CrossRef]
- Rees, M.J.; Mészáros, P. Relativistic fireballs: Energy conversion and time-scales. Mon. Not. R. Astron. Soc. 1992, 258, 41P–43P. [Google Scholar] [CrossRef]
- Philippov, A.A.; Spitkovsky, A. Ab-initio Pulsar Magnetosphere: Particle Acceleration in Oblique Rotators and High-energy Emission Modeling. Astrophys. J. 2018, 855, 94. [Google Scholar] [CrossRef]
- Aharonian, F.; An, Q.; Axikegu; Bai, L.X.; Bai, Y.X.; Bao, Y.W.; Bastieri, D.; Bi, X.J.; Bi, Y.J.; Cai, H.; et al. Extended Very-High-Energy Gamma-Ray Emission Surrounding PSR J0622 + 3749 Observed by LHAASO-KM2A. Phys. Rev. Lett. 2021, 126, 241103. [Google Scholar] [CrossRef] [PubMed]
- Esirkepov, T.Z.; Bulanov, S.V. Fundamental physics and relativistic laboratory astrophysics with extreme power lasers. Eur. Astron. Soc. Publ. Ser. 2012, 58, 7–22. [Google Scholar] [CrossRef]
- Ehlotzky, F.; Krajewska, K.; Kamiński, J.Z. Fundamental processes of quantum electrodynamics in laser fields of relativistic power. Rep. Prog. Phys. 2009, 72, 046401. [Google Scholar] [CrossRef]
- Maslarova, D.; Martinez, B.; Vranic, M. Radiation-dominated injection of positrons generated by the nonlinear Breit–Wheeler process into a plasma channel. Phys. Plasmas 2023, 30, 093107. [Google Scholar] [CrossRef]
- Martinez, B.; Barbosa, B.; Vranic, M. Creation and direct laser acceleration of positrons in a single stage. Phys. Rev. Accel. Beams 2023, 26, 011301. [Google Scholar] [CrossRef]
- Kim, H.; Noh, Y.; Song, J.; Lee, S.; Won, J.; Song, C.; Bae, L.; Ryu, C.M.; Nam, C.H.; Bang, W. Electron-positron generation by irradiating various metallic materials with laser-accelerated electrons. Results Phys. 2024, 57, 107310. [Google Scholar] [CrossRef]
- Matys, M.; Hadjisolomou, P.; Shaisultanov, R.; Valenta, P.; Lamac, M.; Jeong, T.M.; Thistlewood, J.P.; Ridgers, C.P.; Pirozhkov, A.S.; Bulanov, S.V. Collimated γ-flash emission along the target surface irradiated by a laser at non-grazing incidence. New J. Phys. 2025, 27, 033018. [Google Scholar] [CrossRef]
- Blackburn, T.G. Radiation reaction in electron-beam interactions with high-intensity lasers. Rev. Mod. Plasma Phys. 2020, 4, 5. [Google Scholar] [CrossRef]
- Jirka, M.; Bulanov, S.V. Effects of Colliding Laser Pulses Polarization on e-e+ Cascade Development in Extreme Focusing. Phys. Rev. Lett. 2024, 133, 125001. [Google Scholar] [CrossRef]
- Ju, G.; Xu, D.; Highland, M.J.; Thompson, C.; Zhou, H.; Eastman, J.A.; Fuoss, P.H.; Zapol, P.; Kim, H.; Stephenson, G.B. Coherent X-ray Spectroscopy Reveals the Persistence of Island Arrangements during Layer-by-Layer Growth. Nat. Phys. 2019, 15, 589–594. [Google Scholar] [CrossRef]
- Bencivenga, F.; Cucini, R.; Capotondi, F.; Battistoni, A.; Mincigrucci, R.; Giangrisostomi, E.; Gessini, A.; Manfredda, M.; Nikolov, I.; Pedersoli, E.; et al. Four-Wave Mixing Experiments with Extreme Ultraviolet Transient Gratings. Nature 2015, 520, 205–208. [Google Scholar] [CrossRef] [PubMed]
- Fidler, A.P.; Camp, S.J.; Warrick, E.R.; Bloch, E.; Marroux, H.J.; Neumark, D.M.; Schafer, K.J.; Gaarde, M.B.; Leone, S.R. Nonlinear XUV Signal Generation Probed by Transient Grating Spectroscopy with Attosecond Pulses. Nat. Commun. 2019, 10, 1384. [Google Scholar] [CrossRef] [PubMed]
- Chapman, H.N.; Fromme, P.; Barty, A.; White, T.A.; Kirian, R.A.; Aquila, A.; Hunter, M.S.; Schulz, J.; DePonte, D.P.; Weierstall, U.; et al. Femtosecond X-ray Protein Nanocrystallography. Nature 2011, 470, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Queré, F.; Vincenti, H. Reflecting Petawatt Lasers off Relativistic Plasma Mirrors: A Realistic Path to the Schwinger Limit. High Power Laser Sci. Eng. 2021, 9, e62. [Google Scholar] [CrossRef]
- Edwards, M.R.; Mikhailova, J.M.; Fisch, N.J. The X-ray Emission Effectiveness of Plasma Mirrors: Reexamining Power-Law Scaling for Relativistic High-Order Harmonic Generation. Sci. Rep. 2020, 10, 5154. [Google Scholar] [CrossRef]
- Bulanov, S.V.; Naumova, N.M.; Pegoraro, F. Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma. Phys. Plasmas 1994, 1, 745–757. [Google Scholar] [CrossRef]
- Einstein, A. Zur Elektrodynamik Bewegter Körper. Ann. Phys. 1905, 17, 891–921. [Google Scholar] [CrossRef]
- Lamač, M.; Mima, K.; Nejdl, J.; Chaulagain, U.; Bulanov, S.V. Coherent Attosecond X-ray Pulses from Beam-Driven Relativistic Plasma Mirrors. arXiv 2024, arXiv:2403.03277. [Google Scholar] [CrossRef]
- Valenta, P.; Esirkepov, T.Z.; Koga, J.K.; Pirozhkov, A.S.; Kando, M.; Kawachi, T.; Liu, Y.K.; Fang, P.; Chen, P.; Mu, J.; et al. Recoil effects on reflection from relativistic mirrors in laser plasmas. Phys. Plasmas 2020, 27, 032109. [Google Scholar] [CrossRef]
- Mima, K.; Matys, M.; Sentoku, Y.; Nagatomo, H.; Iwata, N.; Jeong, T.; Bulanov, S. Generations of spiral laser beam, spiral electron beam and longitudinal magnetic fields in hole-boring. Fundam. Plasma Phys. 2024, 11, 100057. [Google Scholar] [CrossRef]
- Inchingolo, G.; Grismayer, T.; Loureiro, N.F.; Fonseca, R.A.; Silva, L.O. Fully Kinetic Large-scale Simulations of the Collisionless Magnetorotational Instability. Astrophys. J. 2018, 859, 149. [Google Scholar] [CrossRef]
- The ELI User Portal. Available online: https://up.eli-laser.eu/ (accessed on 27 April 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matys, M.; Thistlewood, J.P.; Kecová, M.; Valenta, P.; Greplová Žáková, M.; Jirka, M.; Hadjisolomou, P.; Špádová, A.; Lamač, M.; Bulanov, S.V. Visualization of High-Intensity Laser–Matter Interactions in Virtual Reality and Web Browser. Photonics 2025, 12, 436. https://doi.org/10.3390/photonics12050436
Matys M, Thistlewood JP, Kecová M, Valenta P, Greplová Žáková M, Jirka M, Hadjisolomou P, Špádová A, Lamač M, Bulanov SV. Visualization of High-Intensity Laser–Matter Interactions in Virtual Reality and Web Browser. Photonics. 2025; 12(5):436. https://doi.org/10.3390/photonics12050436
Chicago/Turabian StyleMatys, Martin, James P. Thistlewood, Mariana Kecová, Petr Valenta, Martina Greplová Žáková, Martin Jirka, Prokopis Hadjisolomou, Alžběta Špádová, Marcel Lamač, and Sergei V. Bulanov. 2025. "Visualization of High-Intensity Laser–Matter Interactions in Virtual Reality and Web Browser" Photonics 12, no. 5: 436. https://doi.org/10.3390/photonics12050436
APA StyleMatys, M., Thistlewood, J. P., Kecová, M., Valenta, P., Greplová Žáková, M., Jirka, M., Hadjisolomou, P., Špádová, A., Lamač, M., & Bulanov, S. V. (2025). Visualization of High-Intensity Laser–Matter Interactions in Virtual Reality and Web Browser. Photonics, 12(5), 436. https://doi.org/10.3390/photonics12050436